
Seraph: An Efficient System for Parallel Processing on a Shared Graph

Zhi Yang, Jilong Xue, Zhi Qu, Shian Hou and Yafei Dai

Computer Science Department, Peking University, Beijing, China
{yangzhi, xjl, quzhi, hsa, dyf}@net.pku.edu.cn

Abstract
Motivated by the need to process very large graphs,
there has been significant recent interest in designing
graph processing systems. However, existing systems
do not naturally support graph data sharing among par-
allel jobs, thus leading to inefficient use of memory.

This paper introduces Seraph, a graph processing
system that enables the job-level parallelism on a
shared graph, i.e., multiple jobs jointly use one graph
dataset in memory. Seraph adopts a copy-on-write se-
mantic to isolate graph mutations, and uses a pull-based
message delivery mode to reduce the actual memory
usage specific to jobs. Our prototype demonstrates that
Seraph significantly outperforms Giraph system in both
memory usage and job completion time.

1. Introduction
Due to the increasing need to process large volumes
of graph-structured data (e.g., social networks and web
graphs), there has been significant recent interest in
parallel frameworks for processing graphs, such as
Pregel [7], Pegasus [1], GraphLab [6], PowerGraph [4],
GPS [9], Giraph [2] and Grace [8]. All these systems
are based on the Bulk Synchronous Parallel (BSP)
computation model that operates on graph data [11].

In these systems, the actual cost of job execution is
to store the large graph data in main memory. However,
they do not allow multiple jobs using the same graph to
share graph data in memory. In particular, systems usu-
ally combine graph data and job-specific vertex value
together. As a result, individual jobs need to operate on
separate graph data in memory, introducing inefficient
use of memory, as illustrated in Figure 1(a).

The underlying reason for such inefficacy is that ex-
isting systems are developed for a single job, rather
for batch-oriented jobs. But in practical online/offline
graph analytics, multiple jobs may be submitted to-
gether. For example, a large number of applications run

Graph &

Value

Job 1

Graph &

Value

Job 2

(a) Existing systems

Graph

Value Value

Job 1 Job 2

(b) Seraph

Figure 1. Parallel computations executed using existing
systems and Seraph. The size of value is much smaller than
that of the graph data.

on the same platform of social networks (e.g., Face-
book and Renren) easily generate jobs overlapping in
time (i.e., concurrency). Another typical case is the sys-
tem may accumulate many jobs during peak hours, and
then submits them in a batch manner when the compu-
tation cluster is idle.

Given a batch of jobs, we have to replicate graph
data in memory to execute jobs in parallel, leading to
a high memory cost. Or alternatively, we have to use a
single in-memory graph to execute jobs in a serial man-
ner, leading to a low throughput due to underused re-
source. This weakness is more noticeable if we use the
resource of cloud, since we have to spend more money
either for larger memory (to store multiple graph data)
or for longer computation time (to finish all the jobs).

To address these limitations, we have developed Ser-
aph, a graph processing system that can support paral-
lel jobs on a shared in-memory graph. The basic idea
of Seraph is to maximize throughput through enabling
the job-level parallelism at a low memory cost. Differ-
ing from existing systems, Seraph decouples the graph-
structure data from the application data associated with
jobs, thus allowing multiple parallel jobs to share graph
data in memory, as illustrated in Figure 1(b).

To maximize parallelism, Seraph incorporates three
new features: First, Seraph only needs to input graph
data once for multiple jobs, providing a very fast startup



…

Message Dispacher

…

Message Dispacher

…

Message Dispacher…

Job 

Controller
Monitor

Master

Worker 1 Worker 2 Worker n

Figure 2. The system architecture of Seraph

time. Second, Seraph adopts copy-on-write semantic
to isolate graph mutation. Once a job needs to change
graph topology, Seraph would copy the corresponding
local region for mutation, without affecting others. Fi-
nally, it adapts priority-based scheduling to reduce in-
terference among jobs. In addition, Seraph also incor-
porates a pull-based messages delivery mode to reduce
the actual memory usage specific to jobs, and graph
partition to reduce the inter-machine communication.

We have implemented an initial Seraph prototype
using the Java. We give the preliminary performance of
this prototype by comparing it with Giraph. Given four
parallel jobs, our experiments show that Seraph could
reduce 63.0% memory usage and 13.3% average job
execution time, as compared with Giraph.

2. Seraph Design and Implementation
In this section, we first present an overview of Seraph,
and then detail the design of its key components.

2.1 Basic Architecture
Figure 2 gives the high-level architecture of a Seraph
cluster, including a single master and several workers.
The master controls the execution of multiple jobs, and
each worker executes part of individual jobs.

The master is mainly responsible for controlling the
execution of multiple jobs and monitoring the state of
workers. Specifically, job controller receives job sub-
missions and dispatchs jobs to workers holding the
corresponding data. It also controls the job progress,
including startup, superstep coordination and termina-
tion. The master also checkpoints the states of each job
for fault-tolerance.

Several workers execute jobs and store its portion of
the graph in memory. To share graph among multiple

jobs, Seraph implements a graph manager to decou-
ple global graph structure data from job-specific data
(e.g., vertex value), and only maintains one graph data
in memory. The graph manager is also responsible for
graph updating and snapshot maintaining. We shall de-
tail these functions in the following subsections.

At startup, a worker registers with the master, and
periodically sends a heartbeat to demonstrate its contin-
ued availability. When a job is dispatched to a worker, a
new executor is created and invoked. The executor is a
generic component that performs a superstep. It loops
through all vertices and calls compute(), typically
executing an user defined external process.

The computation on vertexes requests the values of
all their neighbors in the previous iteration. Instead
of performing a barrier synchronization between each
iteration, Seraph adopts a “pull and consume” asyn-
chronous mode to actively pull neighbor values from
remote machines and to execute computation immedi-
ately. This mechanism will save the memory for storing
intermediate messages.

The message dispatcher is responsible for the mes-
sage delivery for individual jobs. It labels messages
(e.g., the neighbor value) with their job ID before send-
ing them. When they are received at the destination
worker, the dispatcher places the messages directly in
the corresponding vertex’s local buffer according to the
job/vertex ID. To save memory, the local buffer is re-
leased after the computation on a vertex is finished.

2.2 Graph Data Sharing
The unique feature of Seraph is that parallel jobs could
share graph structure data for memory saving, which
is achieved by separating graph data from job-specific
data. We now explain how Seraph enables this sepa-
ration. In existing systems (e.g., Pregel and Giraph), a
graph in memory is stored as a set of Vertex objects.
Each Vertex object includes vertex value, message
queue and an adjacency list storing neighbor edges. No-
tice that the edge list are unique to all jobs and could
be very large (e.g., Facebook users have an average
number of 190 neighbors [10]). Seraph extracts edge
list attribute from Vertex object and forms a new
global graph object containing the edge list. After this
change, each job just needs to create its own Vertex
objects, and makes a reference to this unique graph
object to get the neighbor list of a vertex.



A B C D'

Static Graph

D

A B C D

Job 1

A B C D

Job 2

B'

Figure 3. Illustration of maintaining snapshot in Seraph

Graph mutation. To efficiently support graph shar-
ing, we must be able to isolate graph mutation. Some
graph algorithms may modify the graph structure dur-
ing the computation (e.g., a minimum spanning tree al-
gorithm). Graph mutation would influence other jobs
due to sharing the common graph data. Hence, Seraph
adopts a “copy-on-write” semantic to isolate the local
mutation of individual jobs. When the algorithm (i.e.,
a job) needs to modify the edge list of a vertex, it first
creates a local graph object that copies the corre-
sponding edge list, and then applies mutable operations
on that local copy. The original vertex (and edge list) is
still used by other jobs. This method only copies mu-
table vertices for the corresponding job, thus incurring
little memory overhead. Figure 3 illustrates a simple
example. Job 1 needs to modify vertex B’s edges. It
copies a new vertex B′ from B, and modifies it locally.

Graph updating. Seraph also supports graph up-
date arising from the change of the underlying graph
(e.g., the arrival of new nodes/edges), instead of the
graph mutation introduced by jobs. When a update is
committed at time t, it should be visible (or invisible)
to jobs submitted after (or before) t. Seraph achieves
this through a snapshot mechanism. Graph managers
of workers collaboratively maintain graph snapshot.
When a update arrives, seraph incrementally creates an
new snapshot as the up-to-date snapshot. When a job is
submitted, it refer to the latest snapshot of graph, see
Figure 3. When job 1 is submitted, it is executed on
the graph snapshot {A,B, C, D}. During job 1’s exe-
cution, graph has been updated on vertex D. Since job
1 still uses vertex D, seraph copies a new vertex D′

from D and applies the update. Hence, a new snapshot
{A,B, C} ∪ D′ is formed. Later, job 2 is submitted,
and it just refers to this new snapshot.

2.3 Priority Based Job Scheduling
Parallel execution of jobs can improve system through-
put due to full resource utilization (e.g., network and
CPU). However, it would also incur resource competi-

C

AMessage Queue

BMessage Queue

send

send

(a) Existing systems

C

A

B

pull

C'send get

get

(b) Seraph

Figure 4. The message delivering mode in existing sys-
tems and seraph.

tion. When some resource(e.g., bandwidth) becomes a
bottleneck, all jobs experience the same expected slow-
down due to aggressive resource competition.

To avoid this, Seraph implements a job scheduler to
schedule jobs. The scheduler assigns each job a priority
based on its submission order, e.g., jobs submitted ear-
lier have a higher probability. The higher priority job
gains resource access first, whereas the lower priority
jobs gain access once the resource is not used by the
higher one. Hence, seraph can guarantee that early jobs
are finished as quickly as possible, while jobs submit-
ted later can exploit the idle resource.

Job scheduler is implemented by controlling the
message dispatcher and job execution progress. In par-
ticular, message dispatcher uses a priority queue to
buffer messages from all the jobs. Each time, Seraph
fetches message to send from the head of queue (i.e.,
the message of highest priority job). Meanwhile, Ser-
aph monitors the size of message queue, when it is
larger than a threshold (i.e., the resource is limited),
some low priority jobs will be suspended and stop to
produce messages.

2.4 “Pull-and-Consume” of Message
All BSP-based computation needs values from neigh-
bor vertices in previous superstep. In Pregel, each ver-
tex has a message buffer to receive values sent by their
neighbors. Before the computation, all vertexes should
store received messages locally, which incurs a large
memory overhead (see Figure 4(a)).

Rather than start computing after all vertexes re-
ceived their neighbor messages (i.e., values), Seraph
adopts a “pull and consume” mode to pull neighbor
messages (values) for a vertex. The system performs
compute() immediately after a single vertex has
pulled all its neighbor values, after which the message
buffer of this vertex is released. To avoid message de-
livering blocking the execution, a local cache is used to
pre-fetch messages of some vertexes in advance.



Meanwhile, arrived messages are cache locally for
other vertex’s use. See in Figure 4(b), vertex A and B
both need to obtain vertex C’s message from remote
machine. Vertex A first sends a pull message to C
and caches the message locally. Later, B’s computation
also needs C’s message. It can directly get from the
local cache.

3. Experiments and Evaluations
We have implemented a Seraph prototype using Java.
With this prototype, we present the preliminary results
on Seraph’s performance. Our experiments deploy Ser-
aph on a cluster with 16 machines. Each machine has
64GB of memory and 2.6GHz AMD Opteron 4180
Processor (12 cores). All these machines are connected
by a gigabit switch. We use one machine as the master
and other 15 machines as workers.

We use some popular graph algorithms as bench-
marks to evaluate Seraph’s performance, which include
Pagerank, random walk, Weakly Connected Compo-
nent (WCC) and Single Source Shortest Path (SSSP).
All these algorithms have inherent different character-
istics in resource usage. For example, PageRank is a
network intensive application that needs little compu-
tation cost. In contrast, Random walk needs little net-
work cost but a long-time per-vertex computation. In
our following experiments, we set PageRank’s max it-
eration steps as 30. For random walk, we set 10 walkers
for each vertex and the length of walk is 10 steps .

In our preliminary experiments, we run the bench-
marks on a snapshot of Renren network (at the end of
2008), the largest online social network of China. The
snapshot graph totally contains more than 25 million
vertices (users) and 1.4 billion relational edges.

Our preliminary experiments mainly want to reveal
Seraph’s performance in term of memory usage and
job completion time. We compare Seraph with two
systems:

• Giraph, a popular open source implementation of
Pregel framework, with several additional features
beyond Pregel.

• B-Seraph (Basic Seraph), we remove the Seraph’s
unique feature of graph data sharing, to serve as a
baseline. The B-Seraph is much like a Pregel imple-
mentation.

We compare Seraph with Giraph/B-Seraph in two
scenarios. The first scenario allows duplicate graph

 0

 5

 10

 15

 20

 25

 30

 35

RW SSSP WCC PgRk

E
xe

cu
at

io
n 

tim
e 

(m
in

.) Giraph
B-Seraph
Seraph

(a) Execution time

 0

 50

 100

 150

 200

Giraph
B-Seraph

Seraph

T
ot

al
 m

em
or

y 
us

ed
 (

G
B

)

(b) Memory used

Figure 5. The comparison of job execution in sufficient
memory scenario.

data in memory, where we run multiple Giraph (or
B-Seraph) to execute jobs in a parallel manner. We
want to examine how much memory Seraph can save
through sharing graph data. The second scenario only
allows a single graph data in memory, where Giraph
(or B-Seraph) executes jobs in a serial manner. In this
case, we want to examine to what extent can Seraph
reduce job completion time and how much extra cost it
introduces.

Duplicate Graph Data Scenario: We run random
walk (RW), SSSP, WCC and PageRank using four par-
allel Giraph (or B-Seraph), but only using one Seraph
due to its unique feature. Figure 5(a) and Figure 5(b)
show job completion time and memory usage for three
systems. From Figure 5(a), we see that all the three
systems have similar performance in job completion
time. Even though, Seraph still slightly outperforms
others. It reduce about 13.3% and 16.0% in job comple-
tion time comparing with Girpah and B-Seraph, respec-
tively. This reduction is brought by the job scheduler of
Seraph, which avoids aggressive resource competition.

We now examine how much memory Seraph can
save in this scenario. As shown in Figure 5(b), both Gi-
raph and B-Seraph occupy more than 180GB memory
in total. However, Seraph occupies only 65.7GB mem-
ory for four jobs due to sharing graph data, reducing
63.0% and 64.9% memory usage comparing with Gi-
raph and B-Seraph, respectively.

Unique Graph Data Scenario: We next run random
walk (RW), SSSP, WCC and PageRank using Giraph
(or B-Seraph) in a serial manner, i.e., executing the later
job after the former has been finished. This scenario is
common in computing clusters with limited memory or
very heavy load.

Figure 6(a) shows job completion time for the three
systems. In this case, Seraph significantly outperforms
Giraph and B-Seraph in job completion time. On av-



 0

 5

 10

 15

 20

 25

 30

 35

RW SSSP WCC PgRk

E
xe

cu
at

io
n 

tim
e 

(m
in

.) Giraph
B-Seraph
Seraph

(a) Execution time

 0

 50

 100

 150

 200

Giraph
B-Seraph

Seraph

T
ot

al
 m

em
or

y 
us

ed
 (

G
B

)

(b) Memory used

Figure 6. The comparison of job execution in memory-
limited scenario.

erage, it reduces the individual job completion time
by 42.3% and 35.8%, as compared with Giraph and
B-Seraph, respectively. In term of the total comple-
tion time of four jobs, Seraph brings a reduction of
55.2% and 44.4% as compared with Giraph and B-
Seraph. Moreover, Figure 6(b) shows that Seraph intro-
duces moderate additional memory cost to enable job
parallelism (33% and 25% higher than Giraph and B-
Seraph, respectively).

4. Related Work
Graph applications can be categorized into two classes:
online query processing and offline graph analytics.
Graph databases such as Neo4j [3], HyperGraphDB [5]
and Sones GraphDB belong to the first category. They
typically focus on efficient storage and retrieval of
graph structured data, but lack of support for dis-
tributed, parallel graph computation. In contrast, Ser-
aph focuses on iterative graph structured computation.

Recently, several notable projects have been devel-
oped for processing such large graphs on parallel ma-
chines including Pregel [7], Pegasus [1], GraphLab [6],
PowerGraph [4], GPS [9], Giraph [2], and Grace [8]. In
order to load the entire graph dataset in main memory,
most of the systems (with the exception of the origi-
nal GraphLab and Grace) have been designed to work
on distributed memory parallel machines. However, in
these systems, one loaded graph dataset only belongs to
a single computation job, which introduces inefficient
use of memory. In contrast, Seraph system allows mul-
tiple concurrent jobs to share one loaded graph dataset,
which is designed to maximize throughput.

5. Conclusion and Ongoing Work
This paper introduces Seraph, a large scale graph pro-
cessing system that can support parallel jobs running on
a shared graph. The basic idea of Seraph is to maximize
system throughput through enabling the job-level par-

allelism on a graph shared in memory. Seraph adopts
a copy-on-write semantic to support isolation of graph
mutation. To save memory, a pull-based messages de-
livery mode is used. We have implemented a Seraph
prototype and demonstrate that it significantly outper-
forms current systems both in memory usage and job
completion time.

In the future, we shall study the load balance mech-
anism given the multiple jobs sharing the same graph,
i.e., how to migrate data by taking into account the dif-
ferent loads of jobs on each worker. We also attempt
to make Seraph a real-time graph processing platform,
where the system keeps up with continuous updates on
the graph, and performs incremental graph computa-
tion for multiple jobs running on the platform.

Acknowledgements
This work was supported by the National Basic Re-
search Program of China (Grant No. 2011CB302305)
and the National High Technology Research and De-
velopment Program of China (Grant No.2013AA013203).

References
[1] DEELMAN, E., ET AL. Pegasus: A framework for

mapping complex scientific workflows onto distributed
systems. Sci. Program. 13, 3 (July 2005), 219–237.

[2] http://giraph.apache.org/.
[3] http://neo4j.org.
[4] GONZALEZ, J. E., ET AL. Powergraph: distributed

graph-parallel computation on natural graphs. In Proc.
of OSDI’12 (2012).

[5] IORDANOV, B. Hypergraphdb: a generalized graph
database. In Pro. of WAIM’10 (2010).

[6] LOW, Y., ET AL. Graphlab: A new framework for par-
allel machine learning. CoRR abs/1006.4990 (2010).

[7] MALEWICZ, G., ET AL. Pregel: a system for large-
scale graph processing. In Proc. of SIGMOD’10
(2010).

[8] PRABHAKARAN, V., ET AL. Managing large graphs on
multi-cores with graph awareness. In Proc. of USENIX
ATC’12 (2012).

[9] SALIHOGLU, S., AND WIDOM, J. Computing strongly
connected components in pregel-like systems. Techni-
cal report, Stanford University, 2013.

[10] UGANDER, J., KARRER, B., BACKSTROM, L., AND
MARLOW, C. The anatomy of the facebook social
graph. CoRR abs/1111.4503 (2011).

[11] VALIANT, L. G. A bridging model for parallel compu-
tation. Commun. ACM 33, 8 (Aug. 1990), 103–111.


