
SYS: Synchronize Your System with Simple Hardware

Michael Wei Steven Swanson
mwei@cs.ucsd.edu swanson@cs.ucsd.edu

Department of Computer Science and Engineering
University of California, San Diego

Abstract
Modern distributed systems must deal with the real-
world problems of asynchrony and failures. Protocols
which provide the illusion of synchrony and reliability
add significant overhead and complexity, while expos-
ing asynchrony and failures makes programs difficult to
reason about. In this paper, we show that we can imple-
ment reliable atomic broadcast in hardware over a syn-
chronous network. We show that we can use this net-
work to build primitives which support a wide variety of
distributed applications. Our system offers increased re-
liability and performs an order of magnitude faster than
traditional asynchronous systems.

1 Introduction
Distributed systems today must deal with the complexity
of asynchrony and failures: a request over the network
can take an arbitrary amount of time, or in the case of
a failure, never complete. In spite of this unreliability,
distributed systems must still coordinate to do work. To
that end, most distributed systems either utilize proto-
cols that provide the illusion of synchrony and are ro-
bust to failures, or pass failures and asynchrony on to
the programmer using relaxed consistency models. Both
options have serious drawbacks: not only does provid-
ing the illusion of synchrony add significant overhead,
but ensuring the correctness of the implementation of
any such protocol is not a trivial task [2]. Relaxed con-
sistency models, on the other hand can make distributed
programs difficult, even for the experienced program-
mer, to reason about.

Asynchrony in distributed systems stems from two
major sources: the general-purpose processors dis-
tributed applications run on, and the network. In a dis-
tributed system, processors may crash or simply take a
long time to process requests due to load or resource
sharing. The network may take a long time to deliver a

message over congested network links, deliver messages
out of order, or drop a message completely if it is over-
loaded. Asynchrony complicates implementing atomic
broadcast, the process of sending a message so that it
appears on all receivers at the same time, since it is un-
certain when or if a receiver has received a message.

In this paper, we describe SYS, which uses a special-
ized hardware accelerator and network to avoid these
sources of asynchrony while supporting traditional ap-
plications. SYS implements atomic broadcast in hard-
ware and provides a set of synchronization primitives
to applications which are implemented on top of syn-
chronous hardware and a synchronous network. Since
the synchronization primitives provided by SYS are im-
plemented within a completely synchronous environ-
ment, assumptions about the nature of communications
and failures are simplified. As a result, SYS can utilize
more efficient protocols which make assumptions that
cannot be made in an asynchronous system. For ex-
ample, using a synchronous system overcomes the FLP
impossibility result [5]. We highlight the advantages
and features of SYS over traditional asynchronous dis-
tributed systems below:

• SYS is implemented on top of synchronous logic
and network, enabling protocols which make
strong assumptions about liveliness and failures in
a system.

• SYS accelerates communications by implementing
the network and atomic broadcast in hardware,
eliminating various software overheads tradition-
ally associated with the network stack.

• SYS operates without the intervention of the pro-
cessor, which immunizes SYS from application
crashes. In fact, SYS continues to operate if the host
processor resets.

1



• SYS provides familiar synchronization primitives
to userspace applications, such as locks, counters,
semaphores and registers.

• SYS is simple, power-efficient and inexpensive:
SYS only requires standard Category 6 Ethernet ca-
ble. Our prototype switch on a Xilinx Zynq ARM
FPGA uses merely 2W under load. Likewise, our
SYS NIC prototype uses only 2W under load, in-
cluding the processor. Both designs take less than
10% of the area of the FPGA.

We evaluate the performance of SYS by comparing the
performance of SYS to the performance of other atomic
broadcast protocols, such as Paxos [7] and Apache
Zookeeper’s zab [6].

2 System Overview

SYS
Switch

Ethernet

SYS
Node

SYS
Node

SYS
Node

SYS
Node

Upstream SYS Switch SYS Network
Ethernet

Figure 1: The SYS architecture. The SYS network co-
exists with traditional Ethernet. Each SYS node is con-
nected to a SYS switch, which acts as an arbiter to ensure
that updates are linearizable.

The overall architecture of SYS is shown in figure 1.
SYS consists of SYS nodes, which applications run
on, and SYS switches. SYS nodes are connected to
SYS switches via a point-to-point synchronous serial
link. SYS switches can be daisy-chained to create larger
SYS networks. Each SYS node and switch is also con-
nected to traditional gigabit Ethernet for normal data and
management traffic.

Synchronous hardware in the SYS nodes and switches
enable nodes to atomically broadcast of a small amount
of state, which are exposed to the system as 64 SYS reg-
isters. SYS registers are 64-bits wide, and reads and
writes to SYS registers are linearizable. Registers are
used to construct SYS primitives, which have special-
ized semantics. For example, the counter primitive is a
register which can be either read from or incremented.

The next sections describe the SYS system in further
detail. Section 2.1 describes the interface SYS exposes to
applications, and section 2.3 describes the SYS network
and components in detail.

2.1 Application Interface
SYS exposes a set of primitives, which are built on top
of SYS registers to applications. This list is by no means
exhaustive - it represents the simple primitives we have
implemented thus far. Operations on SYS primitives
are atomically broadcasted. SYS ensures that opera-
tions on SYS primitives are linearizable and visible to
all SYS nodes simultaneously. We describe the primi-
tives and give examples of the applications they enable
below.

2.1.1 Registers

Registers are the most basic SYS primitive. They im-
plement a fully linearizable distributed shared register
that supports read and write operations. Applica-
tions can use SYS registers to consistently share a small
amount of shared state. For example, the value of the
SYS register can represent the currently elected leader in
a leader-election algorithm.

2.1.2 Counter

Counters support two operations: increment and
read. Counters are an ideal match for applications
which require a sequence or total ordering. As an exam-
ple, a counter can server as a percolator [8] timestamp
or as a CORFU [1] sequence number.

2.1.3 AckCounter

The AckCounter is a special purpose counter that tracks
acknowledgments. AckCounters support two opera-
tions: acknowledge and read. When all nodes is-
sue an acknowledge operation, the AckCounter in-
crements by one. The AckCounter is a perfect coun-
terpart for applications which use the counter. For ex-
ample, with percolator, the AckCounter can be used to
identify the latest transaction seen by all nodes.

2.1.4 Semaphore

The Semaphore acts as a traditional semaphore synchro-
nization primitive. SYS sempahores support four opera-
tions: acquire, release, set and read. Sempa-
hores can be used to coordinate access to a shared or
limited resource. For example, a distributed application
can use a semaphore to restrict how many requests ex-
ternal clients can make simultaneously.

2



2.1.5 LockBit

The lockbit acts as a traditional distributed lock which
exposes the lock owner. SYS lockbits support three op-
erations: lock, unlock and read. Each bit in the ex-
posed register refers a node, and a bit set to “1” indicates
that node holds the lock. Lockbits can be used when
communicating the owner of a lock is important. For
example, a lock bit can be used with distributed storage
to indicate which owner holds the most recent updates
to a partition.

2.2 SYS protocol

A

B

C

D
Propose Acknowledge Commit

A

B

C

Switch
Lock Lock Ack Broadcast

(a)

(b)

Figure 2: Asynchronous atomic broadcast protocols and
the SYS protocol. This figure highlights the differences
between the steps of a traditional atomic broadcast pro-
tocol (a), and the SYS protocol (b), which takes ad-
vantage of the synchronous atomic broadcast support in
SYS. In this figure, client B is attempting to atomically
broadcast an update to all other nodes.

The SYS protocol implements atomic broadcast over
the synchronous hardware network provided by the
SYS switches and nodes. In order to perform an atomic
broadcast, nodes first request a lock from the switch.
The switch arbitrates between nodes and grants locks

to exactly one node at a time by sending a lock ack as a
response. Once a node has been granted the lock, it can
broadcast one message, which is then sent to all nodes in
the SYS network, and each node sends an acknowledg-
ment that it has updated the local copies of its registers.
If any node does not send back an acknowledgment, it
is considered in error and removed from the system.

Each communication is synchronous and has a well
defined time: a lock request requires 3 clock cycles to
send, an acknowledge requires 3 clock cycles to receive,
and a broadcast of a 64-bit register update requires 72
cycles to send, 72 cycles to receive (3 cycles for the
operation code, 5 for the register number, and 64 cy-
cles for data), and 3 cycles to acknowledge the broad-
cast. Supported SYS primitives can reduce the amount
of data transmitted (for example, incrementing a counter
requires only transmitting an increment operation in-
stead of the entire register).

Figure 2 compares the SYS protocol with the typical
phases of an atomic broadcast protocol such as zab [6]
or Paxos [7]. The asynchronous atomic broadcast pro-
tocol is actually composed of two broadcasts (propose,
commit) that are required to make the otherwise asyn-
chronous broadcast appear atomic. In SYS, the atomic
broadcast is actually broadcast atomically, so only a sin-
gle broadcast is required.

Unlike asynchronous atomic broadcast protocols,
message transmission, reception and processing take a
bounded amount of time in SYS. Messages that take
too long to process can be considered failures in SYS,
whereas in an asynchronous system it may only be in-
dicative of a transient failure condition. Figure 3 depicts
a typical failure condition in an asynchronous system,
which requires reconfiguration and a retry, whereas the
SYS network can continue operating despite the failed
node. In order to rejoin the system, the node must
load the up-to-date network state, as described in sec-
tion 2.3.2.

2.3 SYS components

As we have previously described, SYS is composed of
SYS nodes, SYS switches, and the point-to-point network
which connects SYS switches and nodes together. We
implement SYS nodes and switches on low-cost Xilinx
Zynq ARM FPGAs. We describe each component be-
low:

3



Acknowledge

A

B

C

D
Propose Recon�gure

A

B

C

Switch
Lock Lock Ack Broadcast

X

X
(a)

(b)

Figure 3: Failures in asynchronous atomic broadcast
protocols and the SYS protocol. A failure in node A oc-
curs after some amount of time, depicted by the X . An
asynchronous protocol cannot be sure if there is a fail-
ure, and many protocols wait a certain amount of time
for an acknowledgment to be received, and must recon-
figure and retry. SYS however, detects a failure immedi-
ately and removes that node from the system.

2.3.1 Network

The physical SYS network is connected via category 6
Ethernet cable. The cable carries four differential sig-
nals, receive, transmit, clock and error. The network
and clock operate at 125MHz, giving the network a the-
oretical maximum bandwidth of 125 Mb/s.

2.3.2 Peripheral

SYS nodes communicate over the SYS network through
the SYS peripheral, which is a memory-mapped device
attached to the processor bus. The SYS registers and
primitives are exposed via a read-only register file. To
request an operation on a SYS primitive, applications
write requests to the request handler, which dispatches
requests to the tx engine and waits for the request to
complete. (Figure 4). In order to atomically broadcast

requests, the tx engine first requests a lock on the net-
work, then after the rx engine has received an acknowl-
edgment for the lock, broadcasts the data over the net-
work. The rx engine automatically updates the register
file based on requests that are broadcast over the net-
work, without intervention from the processor or tx en-
gine. If the network fails for any reason, the rx engine
raises an error signal which prevents the processor from
sending requests or reading the register file. In order
to rejoin the system, the peripheral must reload the net-
work state by requesting a lock and reading up-to-date
values of the SYS registers.

rx

lock
erro

r
rx
ack

update
register

read
register

update
request

tx

clk rx
decode

tx
engine

Register
 File

request
handler

To
 S

w
itc

h

To
 P

ro
ce

ss
or

Figure 4: The SYS peripheral. The SYS peripheral syn-
chronously processes updates from the SYS network to
the register file. The processor can read the register file
and send requests to the request handler.

2.3.3 Switch

The switch is the at the heart of the SYS system, and a
schematic overview can be found in figure 5. The pri-
mary function of the switch is to arbitrate requests on the
network so that only one node can broadcast at any given
time. The switch arbiter decides which port acquires the
lock and ensures fairness by granting the lock randomly
in the case of a tie. In addition to the arbitration logic,
the switch arbiter also implements the SYS primitive op-
erations. For example, when a SYS counter increment
operation is requested, the switch arbiter increments the
value of that register by one and broadcasts it to all other
nodes.

Switches can be daisy-chained together. When there
are multiple switches in a SYS network, one SYS switch
is declared the top-level switch, and handles SYS prim-
itives. The other switches arbitrate and forward oper-
ations to the top-level switch. When switches fail, the
system can safely fall back to asynchronous operation
using traditional asynchronous atomic broadcast. This

4



Register
 File

To
 P

ro
ce

ss
or

To
 N

od
es

...
port

engine

lock_req
lock_ack
val_in
val_out

port
engine

lock_req
lock_ack
val_in
val_out

port
engine

lock_req
lock_ack
val_in
val_out

switch
arbiter

Clock
Generator

Figure 5: The SYS switch. The SYS switch decides which
nodes are granted locks and keeps its own copy of the
SYS registers which nodes can request to load the most
recent state of the SYS registers.

is achieved by clients using a traditional leader-election
protocol. Since all the clients have access to the most
recent global state during a failure, this state is used to
“seed” the asynchronous protocol.

3 Related Work
Synchronous networks have been proposed in the past,
such as IEEE 1588 synchronous Ethernet [4]. Atomic
broadcast on these networks, however, is still imple-
mented using software-based protocols, which can take
a variable amount of time since it is run on a processor.
By implementing and processing the atomic broadcast
protocol in hardware, SYS can rely on operations and
requests to take a fixed amount of time.

Distributed real-time operating systems (DRTOSes)
have also been proposed in the past [9, 10], which add
real-time guarantees to distributed applications. How-
ever, re-writing distributed applications to work within
the time-constrained environment of a RTOS can prove
difficult, especially as a growing number of distributed
applications are written in higher-level languages such
as JAVA. By exposing primitives which distributed ap-
plications can use in software, SYS avoids the need to
place explicit timing constraints on application code.

Spanner [3] was an effort that used GPS clocks

to achieve global consistency. While Spanner can
use a synchronized notion of time, it still relies
on asynchronous general-purpose processors to pro-
cess requests, and therefore has weaker guarantees
than SYS would provide.

4 Results
Our current prototype system with 3 nodes is capable of
achieving 700k register update operations per second.

We expect that this number would remain constant,
even with additional nodes, and could be increased sub-
stantially by running the network at a higher frequency.
In contrast, our test Apache ZooKeeper installation can
support at maximum 31k operations per second with 3
servers, and the number of operations scaled negatively
with each additional servers. We also tested a fast Paxos
implementation, and found it could not support more
than 2k operations per second with 3 servers, which also
scaled negatively with each additional replica.

5 Discussion
The use of hardware to relieve distributed systems from
the problems of asynchrony is far from mature, and we
do not argue that our system is optimal or even the cor-
rect design. The goal of our work is to generate discus-
sion on the use of hardware to deal with asynchrony, and
our preliminary results suggest that this is a worthwhile
endeavor. To that end, we answer several commonly
asked questions about our system in the next sections.

5.1 Does the SYS switch form a bottleneck?
While the SYS switch (or the top-level SYS switch, in
a daisy-chained configuration) forms a bottleneck, the
overall capacity of the switch is over 20× what tradi-
tional solutions can achieve today. It is unlikely that ap-
plications will produce enough work to load the switch,
and if they did, it may be possible to virtualize the switch
at very little cost (so that each application gets its own
“VLAN”), or to increase the frequency of the network
so it can sustain the workload.

5.2 Is the SYS switch a single point of failure?
It is true that the SYS switch is a single point of fail-
ure (i.e., if it were to fail, the entire synchronous net-
work would not be of any use, since no ports would be
granted a lock). However, we contend that such a failure
would be analogous to a top-of-rack switch failing, and
it would be possible to failover to a second, redundant
network. Furthermore, the system could safely failover

5



to asynchronous operation.

5.3 What about hardware errors?
While hardware errors are rare, especially when com-
pared to software errors, SYS protects itself from hard-
ware errors by use of the synchronous network (i.e., if
a link fails to respond in a given time frame, the corre-
sponding node is removed from the SYS network, and
both the node and switch are notified of that failure).
This prevents hardware errors from affecting the liveli-
ness of the system. Under most normal operating con-
ditions, this type of failure never occurs unless there is
an issue with the link (for example, the cable is cut).
In addition, the use of error correction on the links and
on the SYS registers could be used to further protect the
network.

5.4 Does SYS only work for local area net-
works?

Indeed, building a point-to-point synchronous link be-
tween two geodistant datacenters would be an expen-
sive undertaking, and the latency between those links
would be high (>1 ms). SYS, as we have designed,
is only relevant for intra-datacenter communications.
However, after the writing of this paper, we realized that
a synchronous network provided more guarantees than
SYS requires to operate. We have found that SYS only
requires a network that provides bounded-time delivery
and failure-detection, which many asynchronous point-
to-point links provide. Therefore, the key contribution of
SYS is not the synchronous network, but the synchronous
hardware that enables the SYS protocol.

6 Conclusion
Distributed systems have been built under the assump-
tion that asynchrony is an unavoidable reality. SYS chal-
lenges that assumption by providing a synchronous fab-
ric which enables reliable atomic broadcast for a small
amount of state. We show that a small of state is suf-
ficient for building flexible synchronization primitives
which are familiar to distributed application developers.
SYS can be built with inexpensive hardware with very
low power consumption, using standard category 6 ca-
ble. Our preliminary results indicate that SYS performs
at least an order of magnitude better than traditional
atomic broadcast protocols. We believe that this area is
ripe for further exploration and is particularly relevant in
a world where large companies are considering adding
hardware accelerators to their datacenters. We hope to

address the issues of scalability in a future work.

7 Acknowledgements
We would like to thank Mahesh Balakrishnan, Marcos
Aguilera, Dahlia Malki, Ted Wobber and John Davis
for their input on this work. We would also like to
thank Xilinx for providing a donation of Zynq FPGA
boards. This material is based upon work supported by
the National Science Foundation under Grant No. DGE-
1144086.
References
[1] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wob-

ber, M. Wei, and J. D. Davis. Corfu: A shared log de-
sign for flash clusters. Proc. 9th USENIX NSDI, San
Jose, CA, 2012.

[2] M. Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the 7th
symposium on Operating systems design and implemen-
tation, pages 335–350. USENIX Association, 2006.

[3] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Googles globally-
distributed database. In Proceedings of OSDI, volume 1,
2012.

[4] J. C. Eidson. Measurement, control, and communica-
tion using IEEE 1588. Springer Publishing Company,
Incorporated, 2010.

[5] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-
sibility of distributed consensus with one faulty process.
Journal of the ACM (JACM), 32(2):374–382, 1985.

[6] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: wait-free coordination for internet-scale
systems. In Proceedings of the 2010 USENIX con-
ference on USENIX annual technical conference, vol-
ume 8, pages 11–11, 2010.

[7] L. Lamport. Paxos made simple. ACM Sigact News,
32(4):18–25, 2001.

[8] D. Peng and F. Dabek. Large-scale incremental pro-
cessing using distributed transactions and notifications.
In OSDI, volume 10, pages 1–15, 2010.

[9] M. Rozier, V. Abrossimov, F. Armand, I. Boule,
M. Gien, M. Guillemont, F. Herrmann, C. Kaiser,
S. Langlois, P. Léonard, et al. Overview of the chorus
distributed operating systems. In Computing Systems.
Citeseer, 1991.

[10] P. Verı́ssimo, A. Casimiro, and C. Fetzer. The timely
computing base: Timely actions in the presence of
uncertain timeliness. In Proceedings of the Interna-
tional Conference on Dependable Systems and Net-
works, pages 533–542, New York City, USA, June
2000. IEEE Computer Society Press.

6


