
Compositional Gossip Protocols for Infrastructure Management

Lonnie Princehouse

Cornell University
lonnie@cs.cornell.edu

Ken Birman

Cornell University
ken@cs.cornell.edu

Nate Foster

Cornell University
jnfoster@cs.cornell.edu

Abstract
The developers of today’s cloud computing systems are
expected not only to create applications that will work
well at scale, but also to create management infras-
tructures that will monitor run-time conditions and in-
tervene to adapt as conditions evolve. Monitoring and
management tasks are generally not performance inten-
sive, but robustness is paramount: when a large applica-
tion becomes unstable, the management infrastructure
must remain robust, fault-tolerant, and predictable, rid-
ing out the disruption and quickly restoring stability.
MiCA is a new system for creating scalable application
and network management services based on gossip that
are highly resistant to disruptions and efficient in their
use of system resources. This paper introduces MiCA,
focusing especially on compositional features and il-
lustrating how these features facilitate building sophis-
ticated applications in a modular style.

1. Introduction
Many management infrastructure tasks can be ex-
pressed using gossip protocols. including overlay man-
agement [4], system monitoring [8–10], and distributed
storage [2, 5, 7, 9]. With gossip, each node in a dis-
tributed system periodically exchanges information
with a randomly-selected peer. Gossip protocols are
especially well-suited to the modern cloud data center
since they are highly fault-tolerant (a benefit of writing
protocols under the expectation of a non-determinism),
and they are also well-behaved—periodic communica-
tion leads to steady and predictable network load.

This paper presents MiCA (Microprotocol Compo-
sition Architecture), a framework for building sophis-
ticated gossip protocols. MiCA has practical and theo-
retic advantages over ad-hoc coding of these systems:

• High-level abstraction that captures the essence of
gossip protocol logic.

• Modular composition operators that enable code
reuse, testing of components in isolation, and ab-
straction over protocol interfaces.
• Optimized implementations of composite protocols

that reduce the size and frequency of messages ex-
changed.

MiCA’s vision is to equip system designers with ab-
stractions that capture the essence of gossip protocols, a
toolbox of building blocks, and principled composition
operators.

2. Motivation for Composition
MiCA’s modular architecture supports an lightweight
development style. A bare-bones service can be imple-
mented quickly, and then refined by adding extra com-
ponents to help with scalability, reliability, fault toler-
ance, and other needs that arise while transitioning a
proof-of-concept to a bullet-proof production system.
Consider five generations of a hypothetical system:

1. A single master node runs a management protocol. It
gossips with a number of workers in a small system.
With each gossip exchange, the master records the
worker’s current load in a table. The master assigns
some amount to work to the worker if its load is low.

2. As the service becomes popular, the scalability of
this communication pattern becomes a problem. A
self-stabilizing spanning tree component is inserted
into the protocol stack, and is used to alleviate con-
gestion at the master node. Aggregation and broad-
cast protocols are added to send and receive data
over the spanning tree. The master now receives ag-
gregate data propagated up the tree, and broadcasts
task assignments down the tree.

3. Later, the failure of a high-ranking internal node in
the spanning tree overlay causes a long system out-
age. In response, a second spanning tree protocol is

1 2013/9/29



added, creating a redundant and independent span-
ning tree and making the broadcast/aggregation net-
work more robust. The additional network overhead
is deemed acceptable.

4. Next, because the master node is a single point of
failure it is replaced with a group of nodes. Each
group member is the root of two redundant span-
ning trees and gossips to other members on a pri-
vate, small complete graph overlay to maintain a ag-
gregate statistics for the whole system.

5. Finally, A failure-detection and recovery protocol
layer is added to the master group, designating
group members to step in and assume the respon-
sibility of any master that is detected to have failed.

With each iteration, the system becomes more com-
plex. Although the fifth-generation node is running
many logical protocols (two spanning trees for each
master node!), MiCA’s correlated protocol merging
(presented in section 4) will identify and reclaim re-
dundancy in messages sent by different protocols, re-
ducing the effective overhead of the composite protocol
to significantly less than the sum of its parts.

3. Gossip Model
MiCA models a gossip protocol in terms of a set of
node states S, a set of node identifiers N , and three
functions:

rate ∈ S → R+

view ∈ S → ∆(N )

update ∈ S2 → S2

The execution of each node n with local state sn is
an infinite loop that repeatedly sleeps, selects a peer to
gossip with, and exchanges data, as shown in figure 1.

do forever:

sleep(period/rate(sn))
m = sample from view(sn)
s′n, s

′
m = update(sn, sm)

Figure 1. Gossip execution on node n. view returns a
probability-weighted set of neighbors which is sampled
by the run-time. update computes new states for both
nodes in each gossip exchange.

The behavior of the protocol is determined by the
following parameters:

rate(sn) defines how fast n gossips. It is evaluated
every round, prior to initiating gossip. A rate of 1.0
indicates the node should wait for period seconds,
a system-wide constant; a sustained rate of 2.0 in-
dicates the node is gossiping twice per period. Be-
cause rate is a function of current node state, it
may change over time. Most primitive (i.e., non-
composite) protocols gossip at a constant rate. Vary-
ing the rate can violate the well-behaved property
of gossip, so it must be done with caution. MiCA’s
composition operators use dynamic rates, but with
strict upper bounds.

view(sn) controls peer selection for node n. It re-
turns a probability mass distribution over the nodes
in the system, ∆(N ). Although most conventional
gossip protocols choose uniformly at random from a
set of peers, MiCA’s probability distributions serve
three purposes: First, they admit interesting gossip
policies, such as “gossip more often with nearby
neighbors,” and second, they are essential to MiCA’s
notion of composition, which averages probability
weights to build a probability mass distribution that
represents the combined preferences of two proto-
cols. MiCA’s run-time system samples the distribu-
tion. Third, they lift non-determinism out of the pro-
tocol definition and give the run-time system access
to the entire distribution. As with rate, the view

function is evaluated every time a node gossips, so
it may change over time.

update(sn, sm) is the gossip exchange function. When
node n gossips with node m, the update(sn, sm)
function computes the updated states of both nodes.
The update function is written by the programmer
as if both node states are local, with no explicit net-
work communication. MiCA’s run-time distributes
the update function to run between two remote
nodes. Critically, this is done after protocol com-
position has occurred, so that MiCA’s compiler and
run-time have full access to the states of both end-
points when creating composite update functions.
This pair-of-nodes representation is a key differ-
ence between MiCA and other object-oriented gos-
sip frameworks[3][1].

4. Composition
MiCA provides composition operators that combine
multiple sub-protocols into a single composite pro-

2 2013/9/29



tocol. We consider only binary operators in this pa-
per. Composition typically has two parts: Synthesizing
composite view and rate functions, and deciding what
(if any) state should be shared between sub-protocols.

In this paper, we consider two composition opera-
tors for combining view and rates in a composite pro-
tocol: independent merge (⊕ind) and correlated merge
(⊕cor). Both operators multiplex sub-protocols, but dif-
fer in their philosophies. The correlated merge operator
exploits overlapping views, piggy-backing messages
together whenever possible. This has performance ben-
efits, but makes only one random peer selection for two
protocols, which may be problematic if a system de-
pends on independent random selections. The indepen-
dent merge operator perserves independence of sub-
protocol choice, but it lacks the performance benefits
of correlation.

A composite protocol formed with these binary op-
erators forms a hierarchy, with the root being the top-
level protocol that the MiCA run-time system executes.
MiCA only runs one top-level protocol per node, so
running two protocols concurrently requires compos-
ing them together first.

aggr bcast

tree1 tree2mgmt

Figure 2. Composition hierarchy used in the third gen-
eration of the hypothetical example, showing manage-
ment, aggregation, broadcast, and two spanning tree
building sub-protocols. ⊕cor is used for performance,
and⊕ind is used to combine the two spanning-tree pro-
tocols to promote independent network overlays.

MiCA’s composition operators also offer guarantees
on behavior. We define two properties which, taken to-
gether, state that the observable behavior of the com-

posed sub-protocols remains unchanged by composi-
tion.

Rate Preservation. A composition operator is rate-
preserving if each sub-protocol continues to gossip
at its original rate. To accommodate rate preserva-
tion, composite protocols increase their rates.

View Preservation. A composition operator preserves
the views of its sub-protocols if each sub-protocol
gossips, in aggregate, to other nodes in a way that is
consistent with their probability masses in the sub-
protocol’s view.

Both independent and correlated merge are rate- and
view-preserving, although sharing state between pro-
tocols (discussed later) can lead to violations. MiCA’s
composition operators are associative.

Correlated Merge

P1 P2

n1

P1 P2

n2

Figure 3. Correlated merge: When node n1 gossips
with n2, sub-protocols P1 and P2 gossip. This hap-
pens as often as possible without violating view-
preservation.

The correlated merge operator attempts to bundle
messages together, gossiping both sub-protocols simul-
taneously to a common neighbor. If sub-protocol views
are identical probability mass distributions, then cor-
related merge will bundle messages together on ev-
ery round. Conversely, if the distributions are disjoint,
then messages will never be bundled because doing
so would violate view-preservation by causing a sub-
protocol to gossip with a peer that is weighted with
zero in its view. When views partially overlap, ⊕cor

uses a combination of both techniques. Figure 4 shows
sample implementation code for ⊕cor.

3 2013/9/29



class CorrelatedMerge extends Protocol

Protocol p1, p2;

Distribution <Address > view() {

double r1 = p1.rate();

double r2 = p2.rate();

double w = r1 / (r1 + r2);

Distribution <Address > d1 =

p1.view().scale(w);

Distribution <Address > d2 =

p2.view().scale(1-w);

return Distribution.max(d1,

d2).normalize ();

}

double rate() {

double r1 = p1.rate();

double r2 = p2.rate();

Distribution <Address > d1 =

p1.view().scale(r1);

Distribution <Address > d2 =

p2.view().scale(r2);

return Distribution.max(d1,

d2).magnitude ();

}

void update(CorrelatedMerge other) {

CorrelatedMerge that =

(CorrelatedMerge) other;

double r1 = p1.rate();

double r2 = p2.rate();

double w = r1 / (r1 + r2);

double pr1 = p1.view().get(that) * w;

double pr2 = p2.view().get(that) *

(1-w);

double pmin = Math.min(pr1 ,pr2);

double pmax = Math.max(pr1 ,pr2);

double alpha = (pr1 - pmin) / pmax;

double beta = (pr2 - pmin) / pmax;

double gamma = pmin / pmax;

switch (weightedChoice ({ alpha , beta ,

gamma })) {

case 0: // only p1 gossips

p1.update(that.p1); break;

case 1: // only p2 gossips

p2.update(that.p2); break;

case 2: // both p1 and p2 gossip

p1.update(that.p1);

p2.update(that.p2);

}

}

}

Figure 4. Correlated merge implementation. The
Distribution<Address> class represents a probabil-
ity distribution over network addresses. Constructors
and other boilerplate are omitted for brevity.

In figure 4, update gossips sub-protocol P1, P2, or
both, based on a random choice with weights derived

P1 P2

n1 P1 P2

n2

P1 P2

n3

Figure 5. Independent merge: Sub-protocols on node
n1 make independent peer selections and gossip sep-
arately. The merge operator increases its rate to keep
each sub-protocol running at its requested speed.

from the odds of the run-time having chosen node other
due to contributions to the composite view from each
sub-protocol.

Independent Merge
Independent Merge is ideal for situations that call for
true independence of gossip. It is unable to exploit
overlap in communication, as doing so may some-
times violate implicit assumptions of sub-protocol in-
dependence. One such situation is random-walk peer
sampling[6]: a random-walk token is passed around
the network until a time-to-live counter expires, and
information is reported about the peer holding the to-
ken when it stopped. If several random walk protocol
instances were merged in an attempt to gather multiple
samples, ⊕cor’s opportunistic bundling would send all
tokens along the same random path.

The independent merge operator ⊕ind is defined as
follows:

view computes a point-wise mean of sub-protocol
views, weighted by rate. As with ⊕cor, during update,
the probability of having sampled the designated peer is
calculated, and used to weight the choice of which sub-
protocol to execute. Because messages are never bun-
dled, rate rate is simply the sum of the sub-protocol
rates.

State-Sharing
State-sharing refers to the interaction between sub-
protocol states during execution. In MiCA’s Java im-
plementation, this takes the form of two sub-protocol
objects reading and modifying a common reference.

4 2013/9/29



MiCA does not enforce any state-sharing rules, but nei-
ther do its stock composition operators introduce any
state-sharing. The simplest case is isolation, in which
the two protocols do not affect one another, effectively
reducing composition to multiplexing. Under isolation,
the states of the sub-protocols remain disjoint. Formal-
ization of state-sharing schemes is beyond the scope of
this short paper, but for composition operators, proving
isolation-preservation would entail showing that run-
ning two subprotocols under composition is indistin-
guishable from running them as two separate top-level
protocols in two separate MiCA runtimes on the same
node. More interesting is embedding, where the state
of one sub-protocol state is embedded within the state
of the other. This pattern appears when one protocol
uses another as a service. For instance, sub-protocol P1

could build a network overlay topology, and P2 could
use that overlay to define its view. We say P1 is be em-
bedded in P2, indicating a subordinate relationship—
P1 is unaware of P2, but meanwhile P2 is reading from
P1’s state. The embedding protocol P2 should not mod-
ify the embedded P1 state, as doing so may disrupt the
correctness of P1. Embedding is useful for stacking to-
gether layers of protocols, where each layer depends
on the one before it. Figure 7 shows the construction
of such an embedding. Embedding admits a range of
useful subprotocol interaction, but its one-way state
dependence (P1 is independent of P2) is valuable for
proving properties of the embedding protocol based on
the embedded; for example, “If P1 stabilizes, then P2

also stabilizes.”. Unrestricted state sharing where two
subprotocols are allowed to mutate each others’ state
can invalidate correctness properties of individual pro-
tocols.

5. Conclusion
The MiCA gossip framework contributes a novel for-
mulation of gossip protocols, amenable to composition
that preserves key properties of sub-protocols. It offers
composition operators for increased performance or re-
liability. MiCA aims to supply standardized micropro-
tocol components which can be used to implement a
wide variety of systems with real-world applications in
the data centers that power the cloud.

class BasicLeaderElection extends

Protocol implements LeaderElection {

Address leader;

Distribution <Address > view;

LeaderElection(Distribution <Address >

view) {

view = view;

leader = getAddress ();

}

void update(LeaderElection that) {

if(this.leader.compareTo(that.leader) >0){

this.leader = that.leader;

} else {

that.leader = this.leader;

}

}

@Override

boolean isLeader () {

return leader.equals(getAddress ());

}

Distribution <Address > getView () {

return view;

}

}

Figure 6. Basic leader election protocol: Nodes sort
each other by their network address, electing the small-
est address as leader. Other protocols will call the
isLeader() method, which is part of the LeaderElection
interface.

Protocol

createComposite(Distribution <Address >

view) {

// Leader election layer

LeaderElection leaderElection = new

BasicLeaderElection(view);

// Leader serves as the root of a

spanning tree

SpanningTreeOverlay tree = new

SpanningTreeOverlay(leaderElection ,

view);

// Aggregation protocol gossips with

children in tree , counts nodes in

subtree

TreeCountNodes counting = new

TreeCountNodes(tree);

// Compose the three protocols

return new CorrelatedMerge(

new CorrelatedMerge(leaderElection ,

tree),

counting);

}

Figure 7. Composition example: A spanning tree is
built and used for an aggregation. An example leader
election protocol is shown in Figure 6. The other two
sub-protocols are not included for lack of space.

5 2013/9/29



References
[1] P.-E. Dagand, D. Kostić, and V. Kuncak. Opis: Reliable

distributed systems in OCaml. In International Work-
shop on Types in Language Design and Implementation
(TLDI), Savannah, GA, pages 65–78, Jan. 2009.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In ACM Symposium on Oper-
ating Systems Principles (SOSP), Stevenson, WA, pages
205–220, Oct. 2007.

[3] B. Garbinato and R. Guerraoui. Flexible protocol
composition in Bast. In International Conference on
Distributed Computing Systems (ICDCS), Amsterdam,
Netherlands, pages 22–29. IEEE Computer Society
Press, May 1998.

[4] M. Jelasity, A. Montresor, and Ö. Babaoglu. T-Man:
Gossip-based fast overlay topology construction. Com-
puter Networks, 53(13):2321–2339, 2009.

[5] A. Lakshman and P. Malik. Cassandra: Structured
storage system on a P2P network. In ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Com-
puting (PODC), Calgary, Canada, page 5, Aug. 2009.

[6] L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and
A. Ganesh. Peer counting and sampling in overlay
networks: random walk methods. In ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Com-
puting (PODC), Denver, Colorado, pages 123–132,
Aug. 2006.

[7] Riak: An open source scalable data store, Nov. 2010.
Available at http://docs.basho.com/index.html.

[8] R. Subramaniyan, P. Raman, A. D. George, M. A.
Radlinski, and M. A. Radlinski. GEMS: Gossip-
enabled monitoring service for scalable heterogeneous
distributed systems. Cluster Computing, 9(1):101–120,
2006.

[9] R. Van Renesse, K. P. Birman, and W. Vogels. Astro-
labe: A robust and scalable technology for distributed
system monitoring, management, and data mining.
ACM Transactions on Computing Systems, 21(2):164–
206, 2003.

[10] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-
based failure detection service. In International Mid-
dleware Conference (Middleware), The Lake District,
England, pages 55–70, Sept. 1998.

6 2013/9/29

http://docs.basho.com/index.html

	Introduction
	Motivation for Composition
	Gossip Model
	Composition
	Conclusion

