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Abstract—Various memory-based key-value stores, such

as Memcached and Redis, are used to speed up dynamic

web applications. Specifically, they are used to cache the

results of computations, like database queries. Currently,

these key-value stores use either LRU or an LRU approxi-

mation as the replacement policy for choosing a key-value

pair to be evicted from the store. However, if the cost of

recomputing cached values varies a lot, like in the RUBiS

and TPC-W benchmarks, then none of these replacement

policies are the best choice. Instead, it can be advantageous

to take the cost of recomputation into consideration. To

that end, this paper proposes a new replacement policy,

GD-Wheel, which seamlessly integrates recency of access

and cost of recomputation. This paper applies GD-Wheel

to Memcached and evaluates its performance using the

Yahoo! Cloud Serving Benchmark. The evaluation shows

that GD-Wheel, when compared to LRU, greatly reduces

the total recomputation cost, as well as the average and

99th-percentile read access latency for the application.

I. INTRODUCTION

Memory-based key-value stores are used by many

large-scale web applications. For instance, Mem-

cached [10] is used at Facebook, Twitter and Zynga;

and Redis [1] is used at GitHub, Flickr and Stack Over-

flow. As an intermediate layer in the application’s data-

management hierarchy, these key-value stores play an

important role in speeding up dynamic web applications.

By caching the results of computations, like database

queries, key-value stores reduce the application read

access latency.

Figure 1 illustrates how a key-value store is used to

cache the results of computations. After receiving the

HTTP request, the web application first tries to retrieve

the value by sending a GET request with the appropriate

key to the key-value store. If the value is returned at

step 3, then the application skips to step 6. We refer this

as a GET hit. In this case, the application’s read access

latency is only the sum of steps 2 and 3. If, however, a
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Fig. 1: Using a Key-Value Store as a Cache.

not found error is returned at step 3, then the application

needs to request the lower layer in the data-management

hierarchy, e.g., a database, to compute the value. We refer

to this as a GET miss. In this case, the application’s read

access latency is the sum of steps 2 through 5. After the

computation, the application usually sends a SET request

with the computed value to the key-value store in order

to retain the key-value pair for later use. However, due

to the limited capacity of the key-value store, key-value

pairs may be evicted from the store. This results in GET

misses and recomputations of values.

Currently, key-value stores use LRU or an approxi-

mation to LRU as the replacement policy for choosing

a key-value pair to be evicted from the store. For

example, MemC3 recently proposed a CLOCK-based

approximation to LRU for use in Memcached in order to

increase space efficiency and concurrency [9]. However,

neither LRU nor an LRU approximation is necessarily

the best choice if the cost of recomputing cached values

varies a lot. (In Figure 1, this recomputation cost is the

sum of steps 4 and 5.) Then, it may be advantageous

to take the cost of recomputation into account when
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making replacement decisions. In fact, real-world key-

value store deployments [14] and several representative

web application benchmarks [5] provide evidence that

significant cost variations do exist.

To that end, this paper proposes a new replacement

policy, GD-Wheel, which is an efficient implementation

of the GreedyDual algorithm [17] using the Hierarchical

Cost Wheels data structure. The GD-Wheel algorithm

seamlessly integrates recency of access and cost of re-

computation in making replacement decisions. Using the

Hierarchical Cost Wheels data structure for a given cost

range, GD-Wheel yields an efficient implementation of

the GreedyDual algorithm with constant time complexity,

just like LRU.

This paper also describes the application of GD-

Wheel to Memcached. This includes changes to the SET

request protocol so that clients can optionally provide

cost information with each key-value pair. This paper

then evaluates the performance of Memcached with

GD-Wheel using the Yahoo! Cloud Serving Benchmark

(YCSB) [7]. This evaluation shows that GD-Wheel, when

compared to LRU, greatly reduces the total recompu-

tation cost as well as the average and 99th-percentile

read access latency for the data. Specifically, the total

recomputation cost is reduced by as much as 91.05%,

and the average and 99th-percentile latencies are reduced

by as much as 53.95% and 94.65%, respectively.

The rest of this paper is organized as follows. Sec-

tion II provides deeper motivation for our work. Sec-

tion III presents the GD-Wheel algorithm and describes

the implementation of GD-Wheel in the Memcached

key-value store. Section IV describes our experimental

methodology, and Section V presents our experimental

results. Finally, Section VI discusses related work, and

Section VII summarizes our conclusions.

II. BACKGROUND

This section discusses different sources of cost vari-

ations in recomputations of key-value pairs as well as

some relevant characteristics of real-world workloads on

key-value stores.

A. Cost Variations of Recomputations

There exist two common sources of cost variations in

recomputations. The first source is different kinds of si-

multaneous cache usage, in other words, simultaneously

caching different types of objects from different levels

in the application stack. These different types of objects

will likely have different recomputation times, and thus

different costs. For example, Facebook uses Memcached

as both a query cache to lighten the load on databases

and a generic computation cache to store the results of

different applications [14].

The second source is the cost variations among ob-

jects of the same type or at the same level in the applica-

tion stack. Previous work on some dynamic web applica-

tion benchmarks has shown that even objects at the same

level could have widely varying costs. Bouchenak et al.

studied two benchmarks: RUBiS and TPC-W [5]. RUBiS

models an auction site that supports selling, browsing

and bidding [3]. For its read-only database queries, the

extra response time that Bouchenak et al. measured in

the case of a cache miss was: 10ms for 15% of the

requests; 60ms to 95ms for 70% of the requests; and

240ms for 4% of the requests. TPC-W is a web server

and database performance benchmark that simulates an

online bookstore [2]. For its read-only database queries,

the extra response time that Bouchenak et al. measured

in the case of a cache miss was: 10ms to 25ms for 42%

of the requests; 45ms to 150ms for 22% of the requests;

and 210ms to 300ms for 23% of the requests. Thus, for

RUBiS and TPC-W there exists large variation in the

execution times for database queries.

B. Real-World Workloads of Key-Value Stores

Recently, Atikoglu et al. [4] and Nishtala et al. [14]

have provided a detailed picture of how Facebook uses

Memcached.

1) Key/Value Sizes: Small keys and values dominate

in all workloads. However, there is a very large variation

in the sizes of the cached items. Atikoglu et al. reported

that most keys are smaller than 32 bytes and most values

are no more than a few hundred bytes. Nonetheless, there

are a few very large values (around 1 MB). Nishtala et

al. reported that the responses to Memcached requests

have a median size of 135 bytes and a mean size of 954

bytes.

2) GET-to-SET Ratio: All workloads are read in-

tensive. Atikoglu et al. reported that the GET-to-SET

ratio was 30:1 for the workload which is the most

representative of general cache usage. Since each GET

miss is usually followed by a SET to update the cache,

the GET-to-SET ratio is dependent on the GET miss rate.

3) Miss Rate: The miss rate is not negligible.

Atikoglu et al. reported that the mean GET hit rate
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ranged from 81.4% to 98.7% across the different work-

loads. Considering the latency differences between GET

hits and misses, the extra time required in the case of a

GET miss is a considerable part of the total application

read access latency.

III. GD-WHEEL REPLACEMENT POLICY

A. The GreedyDual Algorithm

The GD-Wheel replacement policy is derived from

the GreedyDual algorithm [17]. GreedyDual is actually

a family of algorithms, but we only focus on one version

which is a generalization of LRU. Cao et al. introduced

the best known implementation of GreedyDual [6]. Their

implementation associates a value, H, with each cached

object and uses an inflation value L for aging. On

retrieval or on a hit on an object p, H(p) is set to

L + c(p) where c(p) is the cost of p. On eviction, L

is set to the smallest H in the cache and the object

with H = L is evicted. Just as H combines the cost and

age inflation values, GreedyDual seamlessly integrates

recency of access and cost of recomputation in making

eviction decisions. Cao et al. implemented the GreedyD-

ual algorithm by maintaining a priority queue based on

the H values. Consequently, handling a hit or an eviction

requires O(logn) time, which is slower than the LRU

algorithm.

B. Hierarchical Cost Wheels

In order to reduce the time complexity, we imple-

mented the GreedyDual algorithm using a data structure

that we call Hierarchical Cost Wheels. This data structure

is inspired by Varghese and Lauck’s Hierarchical Timing

Wheels [16]. The Hierarchical Cost Wheels structure is

made up of a series of Cost Wheels. A Cost Wheel is

basically an array of queues. Instead of storing all objects

in a single priority queue, key-value pairs with different

costs are stored in different Cost Wheel queues. Since

handling a key-value pair only needs to deal with a single

queue inside the Hierarchical Cost Wheels, GD-Wheel

requires only O(1) time for handling a hit or an eviction,

just like LRU.

Since each Cost Wheel’s size N is fixed, the Hier-

archical Cost Wheels can only support a limited range

of costs. To ensure that this limited range of costs is

large enough to support any reasonable cost variation

of key-value pairs, we used multiple Cost Wheels in

a hierarchy such that each higher level Cost Wheel

supports a larger range of cost. An object p with H(p) =

a+bN+cN2+ ...+xNy (0 < a,b,c, ...,x < N) will reside

in the (y+1)th level Cost Wheel’s xth queue.

C. The GD-Wheel Replacement Policy

Algorithm 1 The GreedyDual Algorithm

Let M be the set of all key-value pairs in the store.

Initialize L← 0.

For each requested key-value pair p:

if p is already in the store,

Dequeue p.

H(p)← L+ c(p).
Enqueue p.

if p is not in the store,

if there is not enough room in the store for p,

Let L← minH(q), (q ∈M).
Evict q such that H(q) = L.

If L reaches a multiple of the Cost Wheel

size N, do migration.

H(p)← L+ c(p).
Enqueue p.

end

Algorithm 1 describes the GreedyDual algorithm as

implemented in GD-Wheel. It’s slightly modified from

the original algorithm because of the different data

structure. If the requested key-value pair p is already

in the key-value store, H(p) will be updated based on

the change of L, and p will be dequeued from its current

queue and enqueued to the queue corresponding to the

new H(p).

If p is not in the store and there is not enough room

for p, L is updated to the minimum H inside the store.

Then a key-value pair q that has H(q)= L will be evicted.

In addition, a migration is performed when L reaches a

multiple of the Cost Wheel’s size N: all key-value pairs

having H value between L and L+N−1 will be migrated

to a lower-level Cost Wheel. A key-value pair with H =
a+bN (0< a,b<N) will be migrated from the 2nd level

Cost Wheel’s bth queue to the 1st level Cost Wheel’s ath

queue when L reaches bN. When there is enough room

for p, it will be enqueued with H(p) = L+ c(p).

D. The Memcached Key-Value Store

Memcached uses a slab allocator for memory allo-

cation. This slab allocator uses different slab classes to

store key-value pairs of different size ranges. In more

detail, the primary storage is broken up into pages of the

same size. When a page is assigned to a slab class, it is
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cut into chunks of a specific size for that slab class. By

default, the chunk sizes differ by a factor of 1.25 from

one slab class to the next larger class. Each slab class

has its own LRU queue for replacement. When storing

key-value pairs, they are allocated from the slab class

that is the nearest fit. If there are no free chunks, and no

free pages for that slab class, Memcached will look at the

end of the slab class’s LRU queue for an item to reclaim.

It will first search the last few items for one which has

already expired and thus is free for reuse. If it cannot find

an expired item, it will then evict the least recently used

item. Memcached also balances the eviction rates across

slab classes by periodically rebalancing slab assignments

of pages.

Our implementation replaces each slab class’s LRU

replacement policy with GD-Wheel. However, Mem-

cached’s rebalancing policy is unchanged. To the meta-

data of each key-value pair, we add additional fields

including the cost of the key-value pair and the indices

required by the Hierarchical Cost Wheels. These addi-

tional fields introduce an 8-byte metadata overhead to

each stored key-value pair. The SET request protocol is

modified in order to let clients send the additional cost

information with each key-value pair to the Memcached

server.

IV. METHODOLOGY

All experiments were run on two machines connected

to the same 1 Gbps network switch. Each machine had

two Quad-Core AMD Opteron 2393 SE processors and

16 GB of DRAM. One machine acts as the Memcached

server and the other acts as its client. We configured

Memcached with a 2 GB cache, 8 threads, and one of

the two replacement policies. On the client machine, we

use the YCSB Benchmark to generate GET and SET

requests [7]. When the GD-Wheel replacement policy is

used, the client additionally provides the cost of the key-

value pair with the SET requests to Memcached.

The YCSB Benchmark operates in two phases: the

first, the warmup phase, loads the key-value store by

sending SET requests for a certain number of different

key-value pairs; and the second, the measurement phase,

executes the desired workload. Since the pool of key-

value pairs is shared by the two phases, the number of

SET requests in the warmup phase will directly affect the

hit rate in the measurement phase. Thus, we controlled

the number of SET requests in the warmup phase in

order to keep the hit rate during the measurement phase

Workload
Key/Value

Cost Distribution
Size (bytes)

1 16 / 256 10-30(80%);120-180(15%);350-450(5%)

2 16 / 256 10-30(20%);120-180(75%);350-450(5%)

3 16 / 256 10-30(50%);120-180(25%);350-450(25%)

4 16 / 256 10(100%)

5 16 / 256 20-400(100%)

6 16 / 64 10-30(80%);120-180(15%);350-450(5%)

7 16 / 128 10-30(80%);120-180(15%);350-450(5%)

8 16 / 2048 10-30(80%);120-180(15%);350-450(5%)

9 16 / 4096 10-30(80%);120-180(15%);350-450(5%)

TABLE I: Workload Configurations.

Workload LRU GD-Wheel Reduction (%)

1 28918201 5826803 79.85

2 67413318 8930531 86.75

3 72663505 6503548 91.05

4 4938670 4938200 0.01

5 103395684 24708191 76.10

6 29201904 23873144 18.25

7 29196819 5718156 80.42

8 29210183 8330009 71.48

9 28934337 9109587 68.52

TABLE II: Total Recomputation Costs for LRU and GD-

Wheel.

at about 95% for LRU. During the measurement phase,

each workload sends 10 million GET requests following

a zipf distribution on the requested keys. During this

phase, when a GET request fails, or misses, a subsequent

SET request will be sent for the same key. As a result,

each workload’s measurement phase will send 10 million

GET requests and about 500,000 SET requests, for a

GET-to-SET ratio of about 20:1.

Table I shows our different workloads. All workloads

use 16-byte keys. Workload 1 is our baseline with 256-

byte values, three groups of costs based on the cost

variations in RUBiS and TPC-W, and an exponential

distribution for the proportion of each cost group. Work-

loads 2 and 3 use the cost proportions from RUBiS and

TPC-W, respectively. Workload 4 uses the same cost for

all objects. Workload 5 adopts a totally random cost

distribution. Workloads 6 to 9 test with different value

sizes compared to the baseline.

4



0 100 200 300 400
Cost on Miss

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
M

is
se

s
 

LRU

GD-Wheel

Fig. 2: CDF of Recomputation Costs.
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V. EXPERIMENTAL RESULTS

A. Baseline Comparison

For workload 1 the hit rates for the two replacement

policies are nearly the same, 95.064% for LRU and

95.055% for GD-Wheel. Overall, the hit rates achieved

by LRU and GD-Wheel differ by no more than 0.07%

under all workloads except workload 6 which will be

discussed later. Table II shows the total recomputation

costs for all workloads. For workload 1, GD-Wheel

reduces 79.85% of the total recomputation cost compared

to LRU. Figure 2 shows the CDF of recomputation costs

for workload 1: all of the recomputations for GD-Wheel

have a cost less than 16, while the recomputation costs

for LRU span the cost distribution. The average response

latency for GET and SET requests isn’t affected by the

replacement policy. In fact, the GET and SET request

latency is almost identical under GD-Wheel (268.23

us/224.77 us) and LRU (267.4 us/221.72 us).

Figure 3 shows an estimation of the average appli-

cation read access latency for each workload, including

the extra latency for recomputations. In the figure, we

assume each GET request has a response latency of 5
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Fig. 4: 99th Percentile Application Read Access Laten-

cies. LRU’s Workload 3(374) and Workload 5(378) are

cut off due to the space.

when accessing Memcached and use the recomputation

costs as additional miss latency. The results show that

GD-Wheel greatly reduces the average application read

access latency, ranging from 0% to 53.95%. Figure 4

shows an estimate of the 99th-percentile application read

access latency that also assumes a response latency of 5

in Memcached. The results show that GD-Wheel greatly

reduces the 99th-percentile application read access la-

tency, ranging from 0% to 94.65%, which is critical to

large-scale Web services [8].

B. Different Cost Distributions

For workloads 2 and 3, GD-Wheel reduces the total

recomputation cost by 86.75% and 91.05% compared to

LRU. This shows that GD-Wheel is beneficial under the

cost distributions of RUBiS and TPC-W. As would be

expected, the two replacement policies have the same

performance in workload 4, where all key-value pairs

have the same cost. For workload 5 where the cost is to-

tally random, GD-Wheel reduces the total recomputation

cost by 76.10% compared to LRU.

C. Different Value Sizes

For workloads 6 to 9, GD-Wheel reduces the total

recomputation cost by 18.25%, 80.42%, 71.48% and

68.52% compared to LRU. For workload 6, the hit rates

for GD-Wheel (85.09%) and LRU (96.01%) differ a lot.

This is because the 8-byte metadata overhead for GD-

Wheel increases the size of each key-value pair, and this

overhead forces GD-Wheel to use a slab class with fewer,

larger chunks than LRU in workload 6. Consequently,

in this case, fewer objects can be stored in the cache

under GD-Wheel. By default, the chunk sizes differ by
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a factor of 1.25 from one slab class to the next larger

class. If we change this factor to 1.125, the difference

between the hit rates for GD-Wheel (88.45%) and LRU

(95%) is reduced. If, however, we change the factor to

1.375, the two replacement policies use the same slab

class again and the hit rates for GD-Wheel (92.57%)

and LRU (92.58%) are nearly the same. This shows

that this performance inversion depends on both the

key-value pair size and the chunk sizes. In addition,

this performance inversion is more likely to happen

with small key-value pair sizes. However, even with the

performance inversion, GD-Wheel reduces the average

and 99th percentile application read access latency for

workload 6.

VI. RELATED WORK

Many efforts have been made to improve key-value

stores in terms of throughput and space efficiency.

Masstree used a variation of B+ trees to support range

queries and applied optimizations for cache locality

and optimistic concurrency control [12]. MemC3 used

optimistic cuckoo hashing and CLOCK-based cache

management to achieve high concurrency and space-

efficiency [9]. To improve the throughput and reduce

the CPU overhead of key-value stores, several works

implement Memcached over RDMA on Infiniband [11],

[13] or soft-iWARP [15]. To the best of our knowledge,

our work is the first to propose a new replacement policy

that takes cost variations into consideration.

VII. CONCLUSIONS

This paper has argued that a key-value store’s replace-

ment policy should take cost variations into considera-

tion. Moreover, as a demonstration, it has introduced a

new cost-aware replacement policy, GD-Wheel, which

is an implementation of the GreedyDual algorithm with

constant time complexity. In all of our experiments, GD-

Wheel greatly reduced the total recomputation cost and

improved the average application read access latency

as compared to LRU. It also reduced the 99th per-

centile application read access latency which is critical

in modern web applications. In future work, we plan to

introduce cost-awareness into the rebalancing policy of

Memcached.
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