
Cache Provisioning for Interactive NLP Services

Jaimie Kelley and Christopher Stewart
The Ohio State University

Yuxiong He and Sameh Elnikety
Microsoft Research

Abstract

Search engines and question-answer systems support
interactive queries against natural language corpora.
As their corpora grows, these interactive natural lan-
guage processing (NLP) services use large portions
of their IT budget to cache data in costly main mem-
ory. These caches ensure fast access to existing and
recently added data. However, recently added data
often overlaps with existing data in terms of informa-
tive content. Users will not perceive a loss in quality
if such redundant data is excluded from cache. For
this paper, we quantified cost savings when caches
are rightly provisioned so that they are just large
enough to avoid quality loss. We set up two NLP ser-
vices, a search engine and a question-answering sys-
tem, that supported growing corpora from Wikipedia
and the New York Times (up to 88MB and 30GB
per month, respectively). First, we studied the ef-
fect of keeping cache size fixed as new data arrived.
Our results show that some NL corpora survived with
fixed-size cache for months without incurring much
quality loss. We also studied novel provisioning trig-
gered by quality loss—rather than data growth. De-
pending on the quality-loss thresholds, our approach
reduced costs by 45–98% relative to provisioning re-
sources up front and 6-52% relative to provisioning
each month.

1 Introduction

Unstructured, natural language (NL) corpora are
large and growing fast. As of this writing, Twitter re-
ceives more than 300M tweets per day, a 2X increase
over 2010 [20]. TripAdvisor holds over 100M user
reviews, a 2X increase since 2011 [10]. Search en-
gines, question-answer systems, and other big-data
services process user queries against such data. To
meet tight response time limits, these services cache
data in the main memory of large clusters. For exam-

ple, TripAdvisor uses a MemCache cluster on Ama-
zon EC2, and this cluster comprises 52% of its online
storage costs [10, 14]. As data grows, these costly
caches require additional resources.

Given the costs of long response times, many ser-
vices that process natural language data are designed
to compute partial results quickly rather than full re-
sults slowly [12]. These services impose process-
ing timeouts; a query that times out accesses only
a fraction of its data. The difference between results
returned with timeouts enabled (i.e., constrained re-
sources) and results with infinite resources is qual-
ity loss. Users are often satisfied as long as qual-
ity loss is small. Large, in-memory caches prevent
quality loss by allowing queries to access a lot of
data within processing timeouts. However, NL cor-
pora present a challenge: Documents contain redun-
dant information. Services can over provision caches
when the corpora grows faster than its informative
content. Over provisioned caches inflate operating
costs by forcing managers to expand capacity sooner
than needed. With memory prices dropping by an
average of 30% per year [16], it is cost effective to
wait as long as possible before buying resources.

This paper argues that caches for NL workloads
should be provisioned for quality loss, not data
growth. These workloads permit some quality loss
because NL concepts, e.g., synonyms and noisy re-
sults, introduce redundancy into query results. We
present an approach to measure quality loss that cap-
tures these concepts. First, a query’s baseline results
were defined as those computed under a fully provi-
sioned cache with no timeouts. We computed quality
loss by comparing the baseline results with results
observed under smaller caches. Queries had access
to the same available data within a quality-loss test,
but between tests we replayed data growth.

We set up two systems: Apache Lucene [1], an
open source search engine, and OpenEphyra, an
open source question answering system like IBM’s

Watson [8] that uses unstructured data. We used two
NL datasets: Wikipedia and The New York Times.
We organized each corpus into monthly snapshots,
allowing us to measure quality loss over time as data
grew. The portion of the Wikipedia corpus used grew
by at most 30GB per month. The New York Times
corpus added at most 88MB per month. From 2006–
2008, our Wikipedia dataset exploded by more than
3X in raw size. We used a Redis [2] cluster as a main
memory cache in our setup, and Google Trends to
create a sequence of queries that were popular dur-
ing periods studied. We replayed queries one-by-one
under processing timeouts.

Quality loss varied based on 1) the corpus and 2)
cache management policy. Cache under provision-
ing almost always caused quality loss, but often the
effects were small. However, if our search engine
permitted some quality loss among the top K query
results, it could provision 50% fewer cache resources
on both Wikipedia and New York Times. We further
observed that the New York Times corpus permitted
a greater degree of cache under provisioning.

We also studied the impact of well known cache
management policies. In term-based LRU, we stored
only Lucene’s inverted index in our main memory
cache. When the cache was under provisioned, least
recently used terms were swapped out of memory.
This policy is widely used in search engines that pro-
vide pointers to content, rather than the actual con-
tent. In contrast, question-answer systems and online
review engines often provide actual content. These
workloads may prefer content elision, in which cer-
tain documents are elided from the indexes. Con-
tent elision is commonly used when new data re-
places old data and the active size of the corpora is
fixed. Terms in the resulting inverted index refer-
ences fewer documents compared to inverted-index
terms derived from the full corpora. In the worst
case scenario of content elision, which we analyzed,
new data is indexed only after a quality loss thresh-
old is exceeded. Term-based LRU incurred less than
30% quality loss on both corpora. This result held
even when the cache was severely under provisioned.
Content elision incurred less than 30% quality loss
on only the New York Times corpus. We hypothesize
that content elision required more data redundancy to
be effective.

We also used our framework to study the follow-
ing policy: When quality loss exceeds a threshold,
add more servers to expand the cache. We compared
this approach to other approaches, including naively
provisioning enough resources to fully provision the
cache for the full corpus. Our approach reduced costs
in two ways. First, it provisioned resources on de-
mand, reducing operating costs. Second, it would
enable managers to buy hardware later rather than
sooner, taking advantage of falling DRAM prices.
Compared to buying enough memory servers upfront
to handle 3 years of data growth, our approach re-
duced costs by 92%. Compared to an on-demand ap-
proach driven by monthly data growth, our quality-
aware approach reduced costs by up to 48.8%.

The remainder of this paper is organized follows:
Section 2 defines quality loss in the context of NL
workloads. Section 3 describes our experimental re-
sults. Section 4 discusses related work. Section 5
concludes.

2 NLP Workloads

We interact with NL throughout our lives. We have
learned to tolerate imprecise typographical errors,
grammar, accents, and idioms. Services that process
NL corpora also benefit from precision tolerance. We
classify two key types of precision tolerance based
on our experience with search engines.
Synonyms: Words and word sequences often have the
same meaning within the context of a query. The
precise output of a search engine with fully provi-
sioned cache may output links to many of these syn-
onyms. However, users are satisfied when a subset
appears on their screen. For example, a Bing search
for “Flowers in Washington State” returns results
on florists, gardening, and the Coast Rhododendron
(state flower). With a smaller cache, some of these
results would be elided, but as long as the categories
are represented (on the top answer page), many users
will be satisfied.
Noise Tolerance: Continuing the example above, ad-
jacent search results on the answer page represent
different categories. Users are often willing to parse
unrelated categories to find the desired content. In
other words, a certain degree of noisy results are
okay as long as users can find good answers.

2.1 Defining Quality Loss

Quality loss (QL) is a metric to determine answer dis-
similarity between an underprovisioned system and a
fully provisioned baseline. To compute quality loss,
we use the equation:

QL(x, x̂,D,Q) = 1−S(x, x̂,D,Q) , (1)

where x is our current underprovisioned hardware,
software, data, and settings configuration, and x̂ is
the same configuration with enough cache resources
to avoid timeouts. The function S is a measure of
answer set similarity. We issue a set of queries Q
and, for each query qi, we compare its answers under
x to its answers under x̂.

Our similarity function is based on recall of the
top-k results. We perform k-pairwise string compar-
isons, matchings top results under x̂ (i.e., Ri(x̂,D)) to
results under x. When we find a match, we count it
and move on to the next result string from the x̂ an-
swer set. At most one match for a single answer from
a single question will be counted. The total number
of matches is divided by K and averaged across all
questions in Q. Equation 2 captures this base model
and extends it to handle synonyms and noisy data.

S(x, x̂,D,Q) =
∑Q ∑K φ(∑k2

|Rq,k(x̂,D)∩Rq,k2(x,D)|)
|Q| ·K

(2)

Capturing Synonyms: We specify a parameter K
to use in a top-k analysis of quality, and thereby only
look for matches of the first K result from the answer
set. For example, in web search, K can be set as
the number of results on the first page; these K = 10
results are the most critical to deciding result qual-
ity. As K decreases, the number of potential matches
decreases and the denominator decreases; but as K
increases, the difference between the current qual-
ity loss and the quality loss at K− 1 decreases until
quality loss stays within 5% of the quality loss at the
previous K.

Support for Noisy Results: Users are willing to
look through some number of results to find what
they were searching for. We add a parameter k2 to
capture this and revise the top-k analysis to top-2k

Document A
Document C

Term t
0

Lucene Front-End Node

Document A

Ingest NodeIncoming
Data

Term t
1

Content

Document B

Document C Document D

Disk Node

Redis Node

Term t
1

Document B

Document C

Redis Node

Term t
n

Redis Node

Document D

Term Index

Term t
n

Get t
0

Get t
n

Query

Results

Figure 1: Our system setup for experimentation, includ-
ing service logic for both applications we used.

analysis. Similar as top-k analysis, the top-2k anal-
ysis uses the K number of the top baseline results
as denominator; but differently, it uses the number
of matches between the top-K baseline results (from
x̂) and the top-k2 test results (from x) as nominator,
where k2 ≥K. The relative difference of k2 and K re-
flects users’ tolerance level to noise. When users can-
not tolerate any noise, we require k2 =K; with higher
tolerance of noise, k2 can be more significantly larger
than K.

Note, quality loss depends on the full specification
of the above parameters and varies across services
and users. A key contribution in our study is em-
pirical analysis across a wide range of quality-loss
settings.

3 Experimental Results

Figure 1 shows our system setup. For a given a query,
Lucene’s front-end nodes first look up query terms in
a distributed Redis cache. Each Redis node stores up
to 9 GB of data in its main memory. When more
DRAM cache is needed, the cache scales out via ad-
ditional Redis nodes. Terms not found in the Redis
cache are looked up on two dedicated disk nodes that
store 3 TB each. For each query, Lucene waits until
all term data is found or a timeout occurs. Results are
then analyzed, aggregated, and returned to the user.
If the service logic in the application layer analyzes
content, this content is also cached in Redis. For each

1 2 3 4
0%

25%

50%

75%

100%

NYT

WIKI

Cache Under Provisioning
(Data / DRAM)

Q
u
a
lit

y
Lo

ss
 (

%
)

(a) Quality loss of NYT vs
Wiki

1 2 3 4
0%

25%

50%

75%

100%

Luc-NYT
OE-NYT
Luc-WIKI

Cache Under Provisioning
(Data / DRAM)

Q
u
a
li
ty

 L
o
ss

 (
%

)

(b) Content elision caching

0% 10% 20% 30%
0%

25%

50%

75%

100%

Quality Loss (%)

C
D

F

 Content elision

 Term-based LRU

(c) Distribution of quality
loss by replacement policy

0% 25% 50% 75% 100%
0%

25%

50%

75%

100%

Content-based
Term-based

Quality Loss (%)

C
D

F

(d) Quality loss per question

Figure 2: Cache under provisioning on quality loss.

experiment, we set query timeout, active Redis and
disk nodes, and disk access times by broadcasting a
configuration file to all nodes.

Our experiments run on a 112-node local cluster
with EC2-like cloud provisioning. Each node has a
2.66GHz processor, 1 Gb Ethernet, and 100 GB lo-
cal disk storage. Two dedicated disk nodes with the
same specifications also have access to their own 3
TB external hard disk. The nodes described in Fig-
ure 1 communicate through software-defined image
names.

We use Google Trends to capture 2,000 popular
web searches representative of queries from 2004–
2008. For each experiment, we replay these queries
one by one. Typical response times are 500ms. We
use Equation 1 to define quality loss. Our default
configuration sets K = 10, k2 = 30, and query time-
out equal to 10 seconds.

3.1 Comparing NLP Datasets

Our data from The New York Times (NYT) spans ar-
ticles published from 2004 to 2006. Over our trace,
the corpus doubles in size to about 3GB indexed.
However, new articles often repeat informative con-
tent from prior articles, reflecting follow-up stories
and opinions pieces based on recent news articles.

Our data from Wikipedia (Wiki) spans articles
published from 2001 to 2013, including revision
data. We use two 3TB disk nodes to store the en-
tire data set. Unlike New York Times, Wikipedia
has less repeated content. Revisions often extend ar-
ticles rather rephrasing existing content. However,
links between entries can be repetitive, carrying over
terms and copying definitions.

Figure 2(a) shows the observed quality loss across
each data set as we increasingly under provision the
cache, i.e., as data grew, we updated and increased
the size of the term index on disk, but did not pro-
vision additional cache resources. Over time, the
under provisioned cache pushed less popular terms
to disk, increasing the probability that these terms
would not be retrieved within the timeout. Both data
sets handled under provisioned caches well; neither
exceeded a 30% quality loss threshold.

3.2 Cache Replacement Policies

Figure 2(a) showed results where we updated the
term index at each data snapshot. Under provisioned
caches used LRU policies (a part of Redis) to man-
age growing data. For this section, we studied an
alternative approach called content elision, in which
the index size is kept static. In the worst case of con-
tent elision, the term index is not updated. Referring
to Figure 1, we configured the ingest node to hold in-
coming data, instead of forwarding to the disk node.
For services that store both term indexes and content
in main memory caches, each new piece of data can
use a lot of space. These services may prefer content
elision because it prevents data growth. However,
content elision can lead to high quality loss when
incoming data is not highly redundant with existing
data.

Figure 2(b) shows that quality loss under content
elision varies depending on dataset and application.
With Lucene on the NYT data, data growth can dou-
ble the original cache size before hitting 10% quality
loss. However, the less-redundant Wiki data suffers
with quality loss starting at 35%. To analyze content
elision, we set up an additional service, which ac-

cesses content and term indices stored within the Re-
dis cache. OpenEphyra is question-answer system in
the mold of IBM Watson [8]. It uses Lucene to iden-
tify documents related to a NL question and scans the
top documents’ contents for an answer. OpenEphyra
uses the NYT workload. Our results show that for
OpenEphyra up to 1.5 of the original data size can
be added before hitting a 12% quality loss threshold.
We suspect that the difference between OpenEphyra
and Lucene on the NYT dataset is the effect of cache
pressure from actual content access.

3.3 Whole Distribution Analysis

For Figure 2(c), we ran tests at a fixed under provi-
sioning ratio (i.e., data

dram = 2). Each test used differ-
ent data snapshots. We observe significant variance
across the snapshots; quality loss increased by more
than 3X for both caching policies. However, con-
tent elision has a significantly heavier tail relative to
term-based LRU because when key documents are
elided, the quality loss from content elision can af-
fect many queries with terms described within the
document. For Figure 2(d), we plot quality loss for
one test on each question in our trace. Under content
elision and NYT, we observe that most questions in-
cur no quality loss at all, but the outliers that expe-
rience 100% loss (i.e., none of their results are the
same) pull average quality loss up to 10%. Under
term-based LRU with Wiki, we selected one of the
worst data points (average quality loss was 45%) to
highlight the on-off behavior of the replacement pol-
icy. If a query’s terms are totally on disk, quality loss
is high despite potential redundancy in the data.

3.4 Cache Provisioning on Quality Loss

In this section, we propose a new cache provisioning
policy: Expand the cache when when quality loss ex-
ceeds a threshold. When quality loss does exceed
a threshold, we add enough DRAM Redis nodes to
fully provision the cache. Then we wait for quality
loss to exceed the threshold again. By default, we set
the threshold to 20%, but we explore the impact of all
threshold settings. We call our approach provision on
quality loss.

We compare our approach to two alternative provi-
sioning policies. Over provisioning avoids any qual-

ity loss by provisioning enough resources to cache
the entire NYT corpus up front. This policy has
increased operating costs; since the average cost of
DRAM is steadily decreasing, this policy also pays
more per bit for cache resources. Provision on data
growth provisions resources at each data snapshot,
avoiding the increased price per bit from overprovi-
sioning. As in our approach, this approach avoids
the initial cash outlay. We assume all unspent cache
budget is invested at 0.5% APR. Cost savings occur
as interest gained from this investment plus the dif-
ference between the original price and the reduced
price for DRAM.

We assume that DRAM prices drop on average
by 2% per month, and simulate cost savings using
our NYT and Wiki data for price drops every month
and for price drops every three months. Figure 3(a)
shows the cost of our approach relative to over pro-
visioning and provisioning on data growth under the
NYT dataset on Lucene, using term-based cache eli-
sion. Over 8 months, when our approach first pro-
visions cache resources, our costs are 30% of the
over provisioning case and half of the provisioning
on data growth approach. Figure 3(b) shows the
number of months that we can go before provision-
ing as a function of the quality loss. Here, we show
results for both NYT and Wiki. For the New York
Times data set under a DRAM price drop every three
months, we save 19.45% compared to upgrading ev-
ery time we add data. For the Wikipedia data set
under a 3-month DRAM price drop, we save 14.37%
compared to upgrading at every data add. For the
New York Times data set, we save 51.19% compared
to upgrading every month when we simulate a price
drop every month; for the Wikipedia data set, we
save 24.31% compared to upgrading at every data
add when we simulate a price drop every month.

Figure 3(c) uses the same methodologies as the
above but for content elision instead of term-based
LRU elision. Our provisioning on quality loss ap-
proach saves more relative to the over provisioning
approach, costing only 20%, but the provision on
data growth approach is more competitive. This is
because content elision requires updates to DRAM
more frequently than term-based LRU. Figure 3(c)
shows that when the DRAM cost drops every month,
we save 22.51% of the cost of provisioning based on

0 1 2 3 4 5 6 7 8
0%

25%

50%

75%

100%

#Months

R
e
la

ti
v
e
 C

o
s t

 Overprovisioning
 Provision on Data Growth
 Provision on Quality Loss

(a) Term-based LRU cache
policy

0% 10% 20% 30% 40%
0

5

10

15

20
NYT

WIKI

Quality Loss Threshold (%)

M
o
n
th

s
to

 U
p
g
ra

d
e

(b) Effect of quality loss
threshold on term-based
LRU

0 5 10 15
0%

25%

50%

75%

100%

Overprovisioning

Provision on Data Growth

Provision on Quality Loss

#Months

R
e
la

ti
ve

 C
o
st

 Overprovisioning
 Provision on Data Growth
 Provision on Quality Loss

(c) Content elision

0% 20% 40% 60%
0%

25%

50%

75%

100%

Price Drop
Every 3 Months
Price Drop
Every Month

Quality Loss Threshold (%)

C
o
st

 S
a
v
in

g
s

(%
)

(d) Effect of quality loss
threshold on content elision

Figure 3: Cost savings of cache provisioning approaches.

data growth and 80.44% of the cost of over provi-
sioning.

As Figure 3(d) shows, the cost savings from in-
creasing the quality loss threshold at an interest rate
of 0.5% increases modestly when we we compare
provisioning based on quality loss to provisioning
based on data growth. With a quality loss thresh-
old of 20%, we save 14.64% using the New York
Times data set and 11.15% using the Wikipedia cor-
pus for an every three month cost decrease. When
the DRAM cost drops every month, we save 6.14%
using Wikipedia and 22.51% using the New York
Times dataset. This savings will grow as the thresh-
old is relaxed; cost savings also increase as data is
added. The numbers presented in this graph are sub-
ject to small fluctuations dependent upon the point at
which we add data.

3.5 Additional issues

One of the parameters that affects quality loss regard-
less of caching policy used is the choice of presenta-
tion. All of the Lucene quality loss numbers pre-
sented in this paper use the top-2k method of com-
parison, with a k of 10 and a k2 of 30. As Figure 4
shows, the choice of k matters for the results coming
from Lucene. A k less than 10 will result in showing
higher quality loss than is average for the run, and a
k greater than or equal to 10 will be result with qual-
ity loss within 5% of the average quality loss over all
values of k.

Instead of changing the apportioned DRAM, we
could modify the parameter that specified the time-
out allowed by the system to analyze the effect of this
timeout on quality loss.

Figure 5 shows the results of changing the time-
out threshold over multiple different values of Data
/ DRAM. The lowest timeout threshold shown, at
1 second, resulted in a very high number of time-
outs and very few results returned as compared to the
other timeout thresholds shown. A timeout threshold
of 5 seconds resulted in fewer timeouts and a cor-
respondingly lower quality loss. A ten second 10
second threshold is slightly worse than the threshold
with the lowest quality loss, which was 30 seconds.

4 Related Work

Our work intersects information retrieval, natural
language processing, and storage systems. We ex-
ploit imprecision inherent in NL workloads to reduce
caching costs. Our experiments with real NL work-
loads suggests that caches can be significantly under
provisioned without incurring much quality loss.

Approximate computing also focuses on work-
loads that tolerate imprecision. For example, any-
time algorithms [24] define a class of problems that
can be solved incrementally. If the algorithm is inter-
rupted during its execution, an imprecise result is re-
turned. In contrast, compilers that support loop per-
foration [13] accept total running time as input. This
approach elides loop iterations to complete within
preset running times. Similarly, web content adapta-
tion [4, 9] degrades image quality and webpage fea-
tures to meet response time goals. Our own prior
work [11] studies approximate computing within
search engines, where a request may return partial re-
sults to complete within processing timeouts. These
works, for the most part, trade off response time and

0 5 10 15 20 25 30

%

25%

50%

Top K

Q
u

a
lit

y
 L

o
ss

 (
%

)

Figure 4: The effects of varying k on quality loss for a
single experiment.

imprecision. In contrast, our goal in this paper is to
trade imprecision for reduced cache costs. Baek and
Chilimbi [3] present a general framework to support
approximated computation of different applications
to tradeoff between quality and energy consumption.

Cache replacement and compression share our
goal of provisioning fewer resources without incur-
ring quality loss or high response times. SILT [17]
is a key-value store that spans main memory, SSD,
and disk. It combines diverse data structures across
these materials, trading access time overhead with
compression. Chockler et al. have begun study-
ing caching as cloud service to achieve improved
cache replacement under diverse, consolidated work-
loads [5].

Several recent works profile application access
patterns to reduce cache contention between com-
peting applications [7, 19, 22]. Processing timeouts
are akin to service level objectives. Recent work has
shown that meeting strict objectives requires novel
designs [6, 15, 21].

Capacity planners traditionally provision re-
sources based on models of data growth, in part be-
cause non-NL workloads are less permissive to im-
precision. Recent work from Google [23] models
the growth of data. Their approach profiles spe-
cific services and achieves predictably low error.
Mackie [18] provides an earlier, macro-analysis fore-
casting approach.

5 Conclusion and Future Consider-
ations

Cache provisioning for interactive services can be
made more cost effective by becoming quality-

1 2 3 4

0%

50%

100%

1s 5s

10s 30s

Cache Under Provisioning
(Data / DRAM)

Q
u

a
lit

y
 L

o
ss

 (
%

)

Figure 5: The effects of changing threshold on varied
DRAM configurations over the same amount of New York
Times data on Lucene using term-based caching.

aware. In this paper we use Lucene, a search en-
gine which processes data from either a New York
Times data set or data from Wikipedia, to show how
much cost savings can be effected by setting a qual-
ity loss threshold. We examine two caching policies,
content-based and term-based elision, and show that
while both can provide a cost savings under a quality
loss threshold, each has advantages. Content-based
caching works best for low values of data/DRAM,
while term-based caching scales better as data is
added. Content-based caching can save 22.51% us-
ing the New York Times data set and 6.14% using
the Wikipedia data set at a 20% quality loss thresh-
old, while term-based caching can save 41.62% us-
ing the Wikipedia data set and 52.47% using the New
York Times data set under the same 20% quality loss
threshold. We identify variations on computing qual-
ity loss regarding synonyms and noisy data, and ex-
amine how system parameters can effect quality loss.

So far our calculations of quality loss has been
done offline by automated perl scripts. One aspect
that we have so far omitted from the discussion is
how this metric can be used to detect quality loss
in systems in an offline or online system. We are
currently pursuing options that include subsampling
data and queries for a minimal offline system to de-
tect quality loss, extending timeouts linearly in an
offline system to enable disk storage to mimic cache,
and shadow querying for online quality loss detec-
tion. We are also considering the problem of how
to automate the acquisition and integration of addi-
tional cache into the online system case.

References

[1] Apache lucene. http://lucene.
apache.org/core/.

[2] Redis. http://redis.io/.

[3] W. Baek and T. M. Chilimbi. Green: A frame-
work for supporting energy-conscious pro-
gramming using controlled approximation. In
PLDI, 2010.

[4] Y. Chen. Detecting web page structure for
adaptive viewing on small form factor devices.
In WWW, 2003.

[5] G. Chockler, G. Laden, and Y. Vigfusson. De-
sign and implementation of caching services in
the cloud. In IBM Technical Report, 2012.

[6] J. Dean and L. Barroso. The tail at scale. In
Communications of the ACM, 2013.

[7] C. Delimitrou, N. Bambos, and C. Kozyrakis.
Qos-aware admission control in heterogeneous
datacenters. In IEEE ICAC, 2013.

[8] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan,
D. Gondek, A. Kalyanpur, A. Lally, J. Mur-
dock, E. Hyberg, J. Prager, N. Schlaerfer, and
C. Welty. The ai behind watson—the technical
article. In The AI Magazine, 2010.

[9] A. Fox, S. D. Gribble, Y. Chawathe, and
E. A. Brewer. Adapting to network and client
variation using infrastructural process proxies:
lessons and perspectives. Personal Communi-
cations, 5:10–19, 1998.

[10] A. Gelfond. Tripadvisor architecture - 40m
visitors, 200m dynamic page views, 30tb
data. http://highscalability.com,
June 2011.

[11] Y. He, S. Elnikety, J. Larus, and C. Yan. Zeta:
scheduling interactive services with partial ex-
ecution. In SOCC, 2012.

[12] Y. He, S. Elnikety, and H. Sun. Tians schedul-
ing: Using partial processing in best-effort ap-
plications. In ICDCS, 2011.

[13] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Mi-
sailovic, A. Agarwal, and M. C. Rinard. Dy-
namic knobs for responsive power-aware com-
puting. In ASPLOS, 2001.

[14] S. Hsiao, L. Massa, and V. Luu. An epic
tripadvisor update: Why not run on the
cloud? the grand experiment. http://
highscalability.com, Oct. 2012.

[15] J. Hwang and T. Wood. Adaptive performance-
aware distributed memory caching. In IEEE
ICAC, 2013.

[16] International Technology Roadmap for Semi-
conductors. The itrs dram cost is the cost
per bit (packaged microcents) at production.
http://www.itrs.net/.

[17] H. Lim, B. Fan, D. G. Andersen, and
M. Kaminsky. Silt: a memory-efficient, high-
performance key-value store. In SOSP, 2011.

[18] S. Mackie. How fast is our data volume grow-
ing. Storage Strategies Inc., 2009.

[19] H. Madhyastha, J. McCullough, G. Porter,
R. Kapoor, S. Savage, A. Snoeren, and A. Vah-
dat. scc: Cluster storage provisioning informed
by application characteristics and slas. In FAST,
2012.

[20] C. Roe. The growth of unstructured data:
What to do with all those zettabytes? www.
dataversity.net, 2012.

[21] C. Stewart, A. Chakrabarti, and R. Griffith. Zo-
olander: Efficiently meeting very strict, low-
latency slos. In IEEE ICAC, 2013.

[22] C. Stewart, K. Shen, A. Iyengar, and J. Yin. En-
tomomodel: Understanding and avoiding per-
formance anomaly manifestations. In IEEE
MASCOTS, 2010.

[23] M. Stokely, A. Mehrabian, C. Albrecht, F. La-
belle, and A. Merchant. Projecting disk usage
based on historical trends in a cloud environ-
ment. In ScienceCloud, 2012.

[24] S. Zilberstein. Using anytime algorithms in in-
telligent systems. AI Magazine, 17(3), 1996.

